
SAMIRA SOUIT

AMBIENTE DISTRIBUÍDO PARA MONITORAÇÃO E OPERAÇÃO

REMOTA DE SISTEMAS PRODUTIVOS

São Paulo

2009

 2

SAMIRA SOUIT

AMBIENTE DISTRIBUÍDO PARA MONITORAÇÃO E OPERAÇÃO

REMOTA DE SISTEMAS PRODUTIVOS

Monografia apresentada à Escola Politécnica

da Universidade de São Paulo referente à

disciplina PMR 2550 – Projeto de Conclusão

de Curso II

Curso de Graduação:

Engenharia Mecatrônica

Orientador:

Prof. Dr. Paulo Eigi Miyagi

São Paulo

2009

 3

FICHA CATALOGRÁFICA

Souit, Samira

Ambiente distribuído para monitoração e operação remota de

sistemas produtivos/ Samira Souit. – São Paulo, 2009.

Monografia – Escola Politécnica da Universidade de São Paulo.

Departamento de Engenharia Mecatrônica e Sistemas Mecânicos.

1. Monitoramento 2. Sistemas Distribuídos

3. Internet 4.Sistemas Colaborativos I. Universidade de São

Paulo. Escola Politécnica. Departamento de Engenharia

Mecatrônica e Sistemas Mecânicos.

 4

AGRADECIMENTOS

Ao Prof. Dr. Paulo Eigi Miyagi, por me orientar durante este trabalho de

conclusão de curso e, também, por sua orientação em meu projeto de Iniciação

Científica. Agradeço a sua dedicação, sempre mostrando novas visões sobre o

ensino e a engenharia.

Ao colega José Isidro Garcia, pelo constante apoio e suporte ao

desenvolvimento deste trabalho. Ao Prof. Dr. Fabrício Junqueira, por auxiliar-

me nas diversas dificuldades encontradas. Ao colega Marcosiris Pessoa, pelo

apoio técnico fornecido.

À CNPq, FAPESP e CAPES por financiarem este projeto.

 5

RESUMO

Com os avanços da informática, comunicação e mecatrônica, os

sistemas produtivos (SPs) têm evoluído uma estrutura distribuída e dispersa

para assegurar a competitividade das empresas. Entretanto, existem ainda

aspectos metodológicos que necessitam mais estudos, principalmente para a

concepção de arquiteturas para estes sistemas produtivos. Assim, este

trabalho contribui para este estudo através da implementação prática de

programas computacionais para teleoperação e monitoração remota de SPs,

dentro de uma arquitetura distribuída e colaborativa. O SP disperso

considerado neste trabalho é emulado pelo sistema de manufatura flexível

instalado na USP e o software de coordenação utiliza a tecnologia de Web

Services (WS), para integrar as partes que compõe este SP segundo uma

arquitetura distribuída baseada em serviços. Para a implementação destes

programas foi utilizada a linguagem VB.NET e um banco de dados baseado

num servidor SQL Server. Para a comunicação entre o controlador (CLP) de

um dos subsistemas deste SP e o respectivo computador local (supervisório)

utilizou-se os protocolos de comunicação OPC e Profibus. Para estruturação e

especificação do projeto dos programas computacionais adotou-se a UML

(Unified Modeling Language). Como resultado deste trabalho, através dos

programas computacionais desenvolvidos, qualquer computador, via internet,

pode acessar o servidor deste SP e assim pode teleoperar e monitorar

remotamente os equipamentos do SP que estão num ambiente distribuído e

disperso geograficamente.

Palavras Chaves: Monitoração Remota. Sistema Produtivo. Internet. Sistema

Distribuído. Sistema Disperso. Sistema Colaborativo.

 6

ABSTRACT

Information systems, communication and mechatronics have brought

innovations to productive systems (PS) which evolved into a distributed and

disperse structure to guarantee enterprise competitiveness. However, there are

methodological aspects that require more studies, mainly for these productive

systems architecture conception. Therefore, this work contributes for this study

through the practical implementation of computational programs for

teleoperation and remote monitoring of PSs in a distributed and collaborative

architecture. The disperse PS considered on this work is emulated by the

flexible manufacturing system installed in USP and the coordination software

uses a web services (WS) technology to integrate the components of this PS

according to a distributed architecture based on services.

The VB.NET programming language and a database based on SQL Server

were used for the implementation of these softwares. The OPC and Profibus

communication protocols were adopted for communication between the

controller (PLC) from one of the PS subsystems and the respective local

computer (supervisory). For the specification and structuring of the

computational programs project the Unified Modeling Language (UML) was

employed. As result of this work, throughout the computational programs

developed, any computer over the internet has the ability to access the PS

server to remotely operate and monitor the PS equipments located in a

geographically distributed and disperse environment.

Keywords: remote monitoring, productive system, internet, distributed system,

disperse system, collaborative system.

 7

LISTAS DE ILUSTRAÇÕES

Figura 1- Comportamento e interoperabilidade de um WS 16

Figura 2 - Troca de mensagens no protocolo SOAP .. 17

Figura 3 - Arquitetura do sistema SCTSP(Adaptado de Melo(2008)) 21

Figura 4 - Peças a serem montadas: corpo, pino, mola, tampa 22

Figura 5- Subsistema de Alimentação .. 23

Figura 6 - Arquitetura do ambiente distribuído proposto 27

Figura 7a – Interação entre os programas computacionais desenvolvidos 28

Figura 7 b - Configuração do controle local do subsistema de alimentação 29

Figura 8 - Casos de uso do Op.Alimentação .. 32

Figura 9 - Casos de uso do Cliente - SCTSP ... 33

Figura 10 - Casos de uso do Supervisório ... 33

Figura 11 - Arquitetura do software de coordenação 35

Figura 12 - Diagrama de classes do software de coordenação........................ 36

Figura 13 - Diagrama de seqüência para o Registro de Teleoperador 38

Figura 14 - Diagrama de seqüencia para o acesso do Teleoperador 39

Figura 15 - Diagrama de seqüência para a escolha do modo de operação 40

Figura 16 - Diagrama de seqüência para o cadastro do cliente 41

Figura 17 - Diagrama de seqüência para a verificação de disponibilidade do

subsistema de alimentação .. 42

Figura 18 - Diagrama de seqüência para a solicitação de pedido 43

Figura 19 - Diagrama de seqüência para execução do pedido: verificação do

modo de operação ... 44

Figura 20 - Diagrama de seqüência da execução de pedido: Monitoração 45

Figura 21 - Diagrama de seqüência de execução de pedido: modo

Teleoperação ... 46

Figura 22 - Diagrama de seqüência informação sobre o estado das atividades –

Teleoperação ... 46

Figura 23 - Diagrama de seqüência para atualização de estado: Teleoperação

 ... 47

Figura 24 - Diagrama de seqüência para atualização de peças entregues 48

Figura 25 - Diagrama de seqüência para a consulta de peças entregues 48

 8

Figura 26 - Diagrama de seqüência para o registro de informação sobre

dispositivos do subsistema de alimentação ... 49

Figura 27 - Diagrama de seqüência para consulta de estado de dispositivos do

subsistema de alimentação .. 50

Figura 28 - Diagrama de seqüência para parada de emergência 50

Figura 29 - Modelo entidade relação do BD utilizado 51

Figura 30 - CPU 412-2 PCI (Fonte: SIEMENS, 2002c) 53

Figura 31 - Módulo ET200M (SIEMENS, 2000d) ... 54

Figura 32 - Configuração do PG/PC Interface .. 55

Figura 33 - Configuração do Station Configurator Editor 56

Figura 34 - Configuração no STEP 7 ... 57

Figura 35 - Configuração do OPCScout (Fonte: SIEMENS, 2008e) 58

Figura 36 - Seqüência de comandos para estabelecer a conexão OPC Client

(Fonte: Siemens, 2008f) ... 60

Figura 37 - Fluxograma para o Método “AcordaSupervisorio”.......................... 61

Figura 38 - Página de acesso principal .. 62

Figura 39 - Página de login do Cliente ... 63

Figura 40 - Página de Operações do Cliente ... 64

Figura 41 - Página de login do Teleoperador ... 65

Figura 42 - Página de Operações do Teleoperador ... 66

 9

LISTAS DE TABELAS

Tabela 1 - Dispositivos de atuação, detecção, comando e monitoração 24

Tabela 2 - Casos de uso do Op.Alimentação ... 30

Tabela 3 - Variáveis mapeadas para comunicação OPC 58

 10

LISTAS DE ABREVIATURAS E SIGLAS

SP – Sistema Produtivo

WS – Web Service

SCTSP – Sistema Colaborativo de Teleoperação de Sistemas Produtivos

COS – Computação orientada a Serviços

CLP – Controlador Lógico Programável

CPU – Central Processing Unit

IO – Input / Output

MVC – Model – View – Controller

UML – Unified Modeling Language

SOAP – Service Oriented Architecture Protocol

XML – eXtensible Markup Language

DLL – Dynamic Link Library

LSA - Laboratório de Sistemas de Automação

 11

SUMÁRIO

1. Introdução ... 13

2. Metodologia de Desenvolvimento e Ferramentas Consideradas 14

3. Conceitos Fundamentais ... 16

3.1 Web Service (WS) .. 16

3.2 Comunicação entre aplicativos ... 18

4. Definição do ambiente distribuído no SCTSP ... 20

4.1 Descrição do Subsistema de alimentação ... 22

4.1.1 Processo produtivo ... 23

4.2 Arquitetura do ambiente distribuído do subsistema de Alimentação 27

4.2.1 Requisitos do Subsistema de Alimentação 29

Caso de Uso do Subsistema de Alimentação .. 30

4.2.2 Software de Coordenação .. 34

a) Diagrama de Classes ... 35

b) Diagrama de Seqüência .. 37

Cadastro de Teleoperador ... 37

Acesso do Teleoperador .. 38

Modo de Operação do Teleoperador ... 39

Cadastro do cliente .. 40

Verificação de Disponibilidade do Subsistema de Alimentação 41

Solicitação de Pedido ... 42

Execução de Pedido: Verificação do Modo de Operação 44

Execução do Pedido: Modo Monitoração ... 44

Execução do Pedido: Modo Teleoperação .. 45

Informação sobre o estado – Teleoperação 46

Atualização de estado - Teleoperação ... 46

Registro de peças entregues ... 47

Consulta de peças entregues .. 48

Registro dos estados dos equipamentos ... 48

Consulta dos estados dos equipamentos .. 49

Parada de Emergência .. 50

4.2.3 Banco de dados ... 51

 12

4.3 Instalações Físicas ... 52

4.3.1 Programação do CLP ... 54

4.4 Software Supervisório ... 58

4.5 Interfaces dos Usuários .. 62

Acesso Principal... 62

Página de Login do Cliente .. 63

Página de Operações do Cliente ... 63

Página de Login do Teleoperador .. 64

Página de Operações do Teleoperador ... 65

5. Conclusões ... 67

6. Referências Bibliográficas ... 69

ANEXO A – INSTALAÇÕES ELÉTRICAS ... 73

ANEXO B – PROGRAMA EM LADDER DO CONTROLADOR 74

ANEXO C – CÓDIGO DO SOFTWARE DE COORDENAÇÃO 77

ANEXO D – CÓDIGO DO SUPERVISÓRIO .. 94

ANEXO E – PÁGINAS WEB DE ACESSO... 102

 13

1. INTRODUÇÃO

Com a globalização e avanços nas tecnologias de informação, têm

surgido novas estruturas organizacionais dos sistemas produtivos, onde não

apenas os componentes são produzidos em diferentes plantas, mas em

diferentes países, sendo as sub-montagens e montagens dos produtos finais

também realizadas em diferentes locais de modo a assegurar o melhor preço,

qualidade e disponibilidade para os clientes. Para enfrentar os desafios

impostos por estas configurações dispersas, em um ambiente altamente

competitivo, e reagir de modo ótimo e flexível às mudanças de condições, é

necessário que gerentes operacionais e executivos tenham uma ampla

visibilidade do estado de seu SP, em todas as camadas, desde o chão de

fábrica até o nível de negócios (SOCRADES, 2009). Neste contexto, os

sistemas colaborativos teleoperados para sistemas produtivos (SCTSP) têm

surgido como uma alternativa interessante no alcance destes objetivos (MELO

& JUNQUEIRA & MIYAGI, 2008). Este tipo de sistema é, fundamentalmente, o

resultado da integração de componentes autônomos com funcionalidades

especializadas, e que devem ter suas atividades coordenadas para executar

um processo produtivo. Tal estrutura distribuída é comumente adotada, visando

um aumento na qualidade com redução dos custos, o que é necessário para

garantir a competitividade destes sistemas produtivos no mercado global.

Neste sentido, e aproveitando os desenvolvimentos da internet em relação à

capacidade de transmissão de dados, som, vídeo e criação de dispositivos

virtuais além do gerenciamento de repositórios de informação (GORODIA &

ELHAJJ, 2005), considera-se que é possível conceber sistemas colaborativos

transnacionais interligados via algum tipo de rede de comunicação

(JUNQUEIRA & MIYAGI, 2006) (HABIB, 2000). Por outro lado, considerando

que a automatização de um sistema produtivo deve ser concebida de maneira

balanceada de modo tão rígido quanto seja possível e tão flexível quanto seja

necessário (ADLEMO & ANDREASSON, 2007), é imprescindível que os

diferentes subsistemas que compõem um sistema colaborativo disponham de

um ambiente de teleoperação e monitoração remota das diferentes atividades

envolvidas no sistema produtivo, de maneira que se permita uma efetiva

 14

interação de operadores humanos independentemente de sua localização

física em situações tais como: gestão das atividades do serviço fornecido,

arbitragem de conflitos, operação de interfaces, tratamento de falhas e

situações anormais, entre outras.

Neste projeto o objetivo é desenvolver um ambiente distribuído para

teleoperação e monitoração remota de sistemas produtivos, permitindo a

interação via internet entre vários operadores e recursos deste sistema.

Entende-se aqui por “ambiente” a composição e a configuração destes

recursos como o banco de dados, o software Supervisório de controle local do

SP e o software de coordenação; e a interação destes com os atores do SP,

que são os “clientes” e os “teleoperadores”, todos se relacionando de modo

disperso e distribuído, por meio da internet.

 No presente trabalho, um sistema flexível de montagem de peças será

utilizado para emular um sistema produtivo disperso. Primeiramente, será

implementado o controle de uma das partes deste sistema, isto é, um

subsistema com um certo grau de autonomia, utilizando-se uma estrutura que

envolve um computador local e controlador programável e, em seguida, será

criada uma interface computacional tanto para a monitoração local como para

monitoração e teleoperação remotas. Por fim, serão incorporadas subrotinas

que integrarão este subsistema em um sistema de arquitetura distribuída,

baseada em serviços, mais especificamente Web Services (WS)

(MICROSOFT, 2009a), visando-se construir um sistema colaborativo de

teleoperação produtivo (SCTSP).

2. METODOLOGIA DE DESENVOLVIMENTO E FERRAMENTAS

CONSIDERADAS

Adotou-se neste trabalho uma metodologia de desenvolvimento de

pesquisas muito adotada na área de rede de Petri proposta em Jensen (1992),

que envolve três aspectos diferentes: teorias (por exemplo: técnicas de

modelagem, controle colaborativo, programação orientada a objetos,

computação distribuída), ferramentas (por exemplo: programas computacionais

 15

para edição de modelos e simulação de sistemas) e aplicações (por exemplo:

sistema produtivo disperso e sistema colaborativo de teleoperação), que foram

abordados de forma cíclica e repetitiva.

Para o desenvolvimento dos programas computacionais, foi adotada a

arquitetura Model-View-Controller ou MVC (Figura 1). Esta arquitetura MVC é a

estruturação do software com camadas “bem” definidas de manipulação de

dados, e permite que os dados sejam alterados em sua camada específica,

sem a necessidade de alteração das demais, o que é adequado no

desenvolvimento de softwares (ALMEIDA, 2009). Para a modelagem do

software foram utilizados diagramas UML (Unified Modeling Language), tais

como o diagrama de casos de uso (diagrama comportamental), diagrama de

classes (diagrama estrutural) e diagrama de seqüência (diagrama de

interação). Esta modelagem permite uma melhor visualização do software,

auxiliando em seu projeto e em sua programação.

Adotou-se para desenvolver este projeto a linguagem de programação

Visual Basic .NET, que é uma linguagem de programação orientada a objetos,

que permite criar os WSs (MICROSOFT, 2009a) e implementar a arquitetura

proposta. Aliada a essa linguagem de programação, foi considerado um banco

de dados utilizando-se SQL Server (MICROSOFT, 2009c). Como se tratam de

aplicações de um mesmo fabricante, elas apresentam uma fácil

interconectividade (MICROSOFT, 2009a), além de serem utilizadas por várias

indústrias, que são o foco principal deste projeto. Para o controle local,

considerou-se um controlador lógico programável (CLP) da empresa SIEMENS

e o software STEP 7 (SIEMENS, 2007a) para sua programação. Para os dados

trocados entre o software supervisório local e o programa do CLP utilizou-se

OPC XML-DA (SIEMENS,2004b). Para a comunicação entre a CPU do CLP e

a placa de IO foi considerado o PROFIBUS (SIEMENS, 2007a). De fato, foi

realizado um estudo preliminar sobre as várias opções de técnicas e

ferramentas disponíveis e todas as escolhas foram baseadas na

disponibilidade destes e informações para seu uso.

 16

3. CONCEITOS FUNDAMENTAIS

A seguir, serão apresentados os conceitos fundamentais considerados

neste projeto.

3.1 Web Service (WS)

O WS foi desenvolvido como um tipo de padrão a ser utilizado para

implementar a prestação de um serviços via internet, a qual nos últimos anos

tem favorecido o incremento das transações entre empresas (BUSINESS

WIRE, 2006). Este padrão foi desenvolvido para aplicativos que utilizam

comunicação distribuída, isto é, na comunicação remota com interação entre

usuários simultaneamente em um mesmo aplicativo. Assim, um usuário pode

acessar os serviços, ou seja, as funcionalidades que foram desenvolvidas e

que são disponibilizadas por este aplicativo e que ficam assim disponíveis em

outro computador, via Internet. Segundo Kreger (2001), esse padrão permite a

criação de um aplicativo modular (ou seja, sua estrutura permite que ele

componha/seja composto por outros aplicativos), auto-contido e auto-definido,

que pode ser publicado, localizado e invocado via internet.

Baseado no WS tem-se um novo paradigma da computação chamado

“computação orientada a serviços” (COS) (Service-Oriented Computing) o qual

utiliza os serviços, disponibilizados por WS, como componentes fundamentais

no desenvolvimento de aplicações (PAPAZOGLOU & GEORGAKOPOULOS,

2003).

Figura 1- Comportamento e interoperabilidade de um WS

 17

A Figura 2 ilustra a interoperabilidade do WS criada pelo protocolo de

comunicação que utiliza. Este protocolo, o SOAP (Service Oriented

Architecture Protocol e Service Object Acess Protocol) é um protocolo que

define uma gramática XML (eXtensible Markup Language) especializada,

porém flexível, que padroniza o formato das estruturas das mensagens

(RECKZIEGEL, 2006). As mensagens são o método fundamental de troca de

informações entre os WSs e os seus usuários, como ilustra a Figura 2. Ao

utilizar XML para codificar mensagens, o SOAP provê alguns benefícios como,

por exemplo, a facilidade de leitura do XML, permitindo uma melhor analise e

busca por erros; o XML parsers (analistas) e tecnologias correlatas são

mundialmente disponíveis; o XML é um padrão aberto; e admite simplificação

da especificação, diferente de outros protocolos binários como COM, DCOM e

CORBA (RECKZIEGEL, 2006).

Figura 2 - Troca de mensagens no protocolo SOAP

Segundo Melo (2008), com a adoção deste paradigma, um SP pode ter

melhores condições de se adaptar as mudanças dos mercados, considerando

o ambiente heterogêneo próprio deste tipo de sistema. Assim, entre as

principais características que promovem a adoção da COS no SCTSP

encontra-se: a) flexibilidade na implementação de ambientes heterogêneos; b)

flexibilidade do sistema frente a futuras alterações de especificações; c) reuso

dos componentes fornecedores de serviços; d) melhores condições para

assegurar a integração dos componentes modulares. Existem assim propostas

com novos tipos de infra-estrutura que permitem a integração de empresas por

meio de uma rede óptica de altíssima velocidade, constituindo um ambiente

próprio de trabalho colaborativo à distância (KYATERA, 2003).

Como o WS é um fundamento para a implementação da computação

orientada a serviços, vários trabalhos têm sido desenvolvidos com o intuito de

 18

definir procedimentos de coordenação e integração dos WS aplicados à um

ambiente fabril (SOCRADES, 2009).

3.2 Comunicação entre aplicativos

 Neste projeto, o supervisório que é um aplicativo que gerencia as

atividades dos controladores lógicos programáveis dos subsistemas do SP. É

assim necessário estabelecer como é a comunicação deste equipamento com

o aplicativo desenvolvido. Outro aspecto importante é sobre a comunicação

entre os programas computacionais deste ambiente distribuído (supervisório,

software de coordenação, programa do CLP) e que serão abordados

posteriormente. Para isto, a seguir tem-se um breve histórico dos principais

métodos de comunicação existentes.

 Histórico

O padrão DDE (Dynamic Data Exchange) foi criado em 1987 com o

lançamento da plataforma do Windows 2.0. Este padrão regulamentava a troca

de dados entre diferentes aplicações dentro desta plataforma Windows. Na

maioria das vezes uma aplicação (servidor) que possui o dado, fornece-o a

outra aplicação (cliente)(TALTECH, 2009). Devido ao Windows ter uma

arquitetura baseada em mensagens, a transferência de mensagens é o jeito

mais prático de se trocar informações. Um dos usos mais comuns deste

protocolo é para se transferir dados em tempo real, como por exemplo, dados

de instrumentos científicos ou de controle de processos (MICROSOFT, 2009b).

A tecnologia OLE (Object Linking and Embedding) foi desenvolvida pela

Microsoft em meados de 1990, para suprir a necessidade de se integrar

diferentes aplicações dentro da plataforma Windows, de forma a solucionar os

problemas de desempenho e confiabilidade do até então utilizado padrão DDE

(FONSECA, 2009).

Como uma continuação da tecnologia OLE, o DCOM (Distribuited

Component Object Model) surgiu junto com o sistema operacional Windows NT

e foi logo aceito pela indústria. Basicamente, o DCOM é um conjunto de

 19

definições para permitir a implementação de aplicações distribuídas (aplicações

que estão em computadores remotos e que interagem entre si) em uma

arquitetura cliente-servidor. Uma arquitetura cliente-servidor é uma arquitetura

em que um aplicativo possui os dados (servidor) e outro aplicativo requisita

esses dados (cliente). Desta forma, um cliente pode acessar diversos

servidores ao mesmo tempo e um servidor pode disponibilizar suas

funcionalidades para diferentes clientes ao mesmo tempo. Através da definição

de interfaces, o DCOM permite que objetos sejam instanciados de forma

distribuída e seus serviços e métodos (funções) sejam acessíveis por

diferentes programas. Para isso é necessária a utilização de uma linguagem

especial, a IDL (Interface Definition Language). Isto significa que cada cliente

pode chamar os métodos de cada objeto DCOM em um determinado servidor,

independentemente do ambiente de programação (linguagem, compilador,

versão, etc) que os mesmos foram criados. Através de um identificador único,

GUID (Global Unique Identifier), as interfaces são protegidas contra

modificações após a sua publicação e a compatibilidade dos objetos DCOM é

então garantida. (FONSECA, 2008)

Em seguida, surgiu a tecnologia ActiveX, em que os usuários ainda

precisavam considerar funções de controle para implementar aproximadamente

seis núcleos de interfaces. Como resposta a este problema, a Microsoft

produziu macros, bibliotecas, extensões em C++, wizards, entre outras

ferramentas a fim de se facilitar a implementação desses controles. Assim,

ActiveX controls, que são pequenos programas criados em bloco, servem para

criar aplicações distribuídas que funcionam na internet através de web

browsers (MICROSOFT, 2009d).

Atualmente, essa tecnologia ActiveX está sendo substituída pela

plataforma .NET da Microsoft, que visa uma plataforma única para

desenvolvimento e execução de sistemas e aplicações. Com idéia semelhante

na plataforma Java, o programador deixa de escrever código para um sistema

ou dispositivo específico e passa a escrever programas computacionais para a

plataforma .NET. Esta plataforma permite a execução, construção e

desenvolvimento de WSs de forma integrada e unificada (MICROSOFT,

2009e). Por sua vez, WS configura-se como a mais nova solução de integração

de sistemas e na comunicação de diferentes aplicações. Com essa tecnologia

 20

é possível que novas aplicações interajam com as existentes e que sistemas

desenvolvidos em plataformas diferentes sejam compatíveis. Cada aplicação

pode possuir sua própria linguagem, que é traduzida para um formato

universal, o XML. Para as empresas, os WSs podem trazer agilidade para os

processos e eficiência na comunicação entre cadeias de produção ou de

logística (SOCRADES, 2009). Este projeto considerou assim este método de

integração de aplicações para construir a arquitetura distribuída de controle e a

monitoração remota dos subsistemas.

4. DEFINIÇÃO DO AMBIENTE DISTRIBUÍDO NO SCTSP

Este capítulo apresenta uma definição para o ambiente distribuído que

está inserido no contexto de um SCTSP, considerado como base no estudo de

caso utilizado neste trabalho. Para tal finalidade foi adotado o sistema

automatizado de montagem industrial, instalado na Escola Politécnica da USP

(LIRA, 2008).

A arquitetura do SCTSP (Figura 3) visa automatizar e coordenar as

diferentes atividades dos vários subsistemas que compõem o SP, isto é, o

subsistema de montagem, o subsistema de transporte, o subsistema de

inspeção, o subsistema de alimentação de peças e o subsistema de vigilância,

que são interligados através de uma rede de comunicações, fornecendo

serviços específicos. Resumidamente, o subsistema de inspeção executa o

serviço de controle de qualidade e identificação das características físicas do

produto fornecido pelo subsistema de alimentação (peça “corpo”), de maneira

que se garantam as especificações do produto requisitado pelo subsistema de

montagem. O subsistema de transporte executa o serviço de transporte e

movimentação dos pallets onde as peças são coletadas ou retiradas dos outros

subsistemas. O subsistema de montagem, por sua vez, executa o serviço de

montagem dos produtos finais ou “peças montadas” que podem ser de três

tipos, dependendo das seguintes variáveis: “corpo” prata com “êmbolo” preto,

“mola” e “tampa”; “corpo” rosa com “êmbolo” preto, “mola” e “tampa”; e “corpo”

 21

preto com “êmbolo” prata, “mola” e “tampa”. A quantidade de produtos finais é

requisitada por um usuário via internet. O subsistema de vigilância executa

serviços de visualização dos equipamentos.

Figura 3 - Arquitetura do sistema SCTSP(Adaptado de Melo(2008))

As peças que compõem o produto são ilustradas na Figura 4. A idéia é

que os diferentes subsistemas possam ser teleoperados e monitorados

remotamente via internet. Desta maneira, os operadores de cada um dos

subsistemas da arquitetura do SCTP (subsistema de alimentação, de

montagem, de transporte, de vigilância e de inspeção), são chamados de

op.alimentação, op.motagem, op.Transporte, op.Vigilância op.Inspeção

respectivamente e, podem acessar o sistema em dois possíveis modos de

operação: de monitoração remota e teleoperação. No modo de monitoração

remota, uma série de informações é fornecida ao teleoperador, com o intuito de

garantir o acompanhamento da execução remota do processo produtivo

através do acompanhamento do serviço oferecido. No modo de teleoperação,

uma série de comandos é disponibilizada ao operador para a intervenção na

execução dos processos produtivos. Assim, através da troca de informações

entre os diferentes serviços que integram o SCTP é estabelecido um trabalho

colaborativo de vários operadores e subsistemas com o intuito de produzir um

produto final.

 22

Figura 4 - Peças a serem montadas: corpo, pino, mola, tampa

O foco deste do projeto é o desenvolvimento das interfaces para a

monitoração e teleoperação do subsistema de alimentação (em destaque na

Figura 3). A estratégia de desenvolvimento do sistema aqui adotada é focada

na implementação de todos os serviços específicos de um único subsistema

mas de modo que estes possam ser devidamente e facilmente replicados e

adaptados a outros subsistemas do SP.

4.1 Descrição do Subsistema de alimentação

Para realizar a monitoração e teleoperação do subsistema de

alimentação (Figura 5), é necessário conhecer quais elementos compõem este

subsistema, identificando quais os tipos de dados tratados para a execução

dos serviços, como estes estão fisicamente armazenados na memória dos

controladores locais (no caso, no CLP), bem como as funções disponíveis. Este

levantamento de dados foi feito, e organizado em tabelas, para facilitar a

comunicação entre o subsistema e os programas computacionais das

interfaces desenvolvidas.

 23

Figura 5- Subsistema de Alimentação

4.1.1 Processo produtivo

O subsistema de alimentação possui um buffer com capacidade de até

10 peças “corpo”, que podem ser nas cores preta, prata ou rosa e ser de

plástico ou metálica. Para extrair tais peças do buffer (Figura 5) é utilizado um

pistão linear de simples ação, 1A, que posiciona a peça “corpo” para ser

transferida por um braço basculante, 3A, ao subsistema de inspeção. O cilindro

é atuado por uma válvula de comando elétrico, 1Y1. Quando o pistão está

recuado, a peça se mantém no buffer, e quando o pistão está estendido, a

peça é retirada do buffer. As posições finais do pistão são detectadas utilizando

sensores magnéticos de proximidade, 1B1 e 1B2. Além disso, o buffer conta

com um sensor óptico de presença que está situado na sua base, 1B4. O

transporte da peça “corpo” a outro sistema produtivo é feito pela ação de um

braço basculante acionado por um cilindro pneumático rotatório ou giratório de

acordo com o nome do fabricante, 3A, e que pode ser ajustado para vários

 24

ângulos de deslocamento entre 0° e 180°. As posições finais são determinadas

por micro-sensores fim-de-curso, 3S1 e 3S2. O cilindro é atuado por válvulas

de comandos elétrico, 3Y1 e 3Y2. Na extremidade livre do braço basculante

tem-se uma garra com uma ventosa de aspiração para segurar e soltar uma

peça “corpo”. A aspiração é feita por um gerador de vácuo, 2A. O controle da

aspiração é detectado por um vacuostato eletrônico ajustável, 2B1, que possui

um pressostato que regula o ponto de comutação. Para o ajuste e configuração

inicial do dos atuadores do subsistema de alimentação é disponibilizado um

conjunto de dispositivos de comandos e de monitoração.

Na Tabela 1, tem-se uma lista dos dispositivos de atuação, detecção,

comando e monitoração deste subsistema:

Tabela 1 - Dispositivos de atuação, detecção, comando e monitoração

Mapeamento de IOs - Subsistema de alimentação

Código Função Tipo de Dispositivo Tipo de Dado Endereço CLP

1A

Retira a peça

“corpo” do

depósito

Cilindro pneumático

de simples ação
--

Dispositivo

de atuação

2A
Gerador de vácuo

e ventosa

Gerador de vácuo e

ventosa
-- --

Dispositivo

de atuação

3A

Transporta a peça

“corpo” ao

subsistema

seguinte

Cilindro pneumático

giratório de dupla

ação (braço

basculante)

-- --

Dispositivo

de atuação

1Y1

Altera o estado de

válvula de atuação

do cilindro 1A

Solenóide Booleano A0.0

Dispositivo

de atuação

3Y1

Altera o estado de

válvula de atuação

do cilindro 3A na

posição de

alimentação

Solenóide Booleano A0.1

Dispositivo

de atuação

3Y2

Altera o estado de

válvula de atuação

do cilindro 3A na

posição de

inspeção

Solenóide Booleano A0.2

Dispositivo

de atuação

 25

2Y1

Altera estado de

válvula+ atuação

para posição de

desligar o gerador

de vácuo

Solenóide Booleano A0.3

Dispositivo

de atuação

2Y2

Altera estado de

válvula atuação

para posição de

ligar gerador de

vácuo

Solenóide Booleano A0.4

Dispositivo

de atuação

H1
Lâmpada botão de

start
Lâmpada Booleano A1.0

Dispositivo

de

Monitoração

H2
Lâmpada botão de

reset
Lâmpada Booleano A1.1

Dispositivo

de

Monitoração

H3
Lâmpada botão

magazine empty
Lâmpada Booleano A1.2

Dispositivo

de

Monitoração

H4

Indica o estado do

canal de

comunicação

Lâmpada Booleano A1.3

Dispositivo

de

Monitoração

1B2

Detecta se o

pistão está

recuado (carrega

peça “corpo” do

depósito)

Sensor magnético

de proximidade
Booleano E0.0

Dispositivo

de

Detecção

1B1

Detecta se pistão

está estendido

(retirou e retém

peça “corpo”)

Sensor magnético

de proximidade
Booleano E0.1

Dispositivo

de

Detecção

3S1

Detecta se braço

basculante está

posicionado no

sistema de

alimentação

Sensor de contato

mecânico
Booleano E0.2

Dispositivo

de

Detecção

3S2

Detecta se o braço

basculante está

posicionado no

sistema de

Sensor de contato

mecânico
Booleano E0.3

Dispositivo

de

Detecção

 26

inspeção

2B1

Detecta se a garra

ventosa pegou

peça “corpo”

Vacuostato Booleano E0.5

Dispositivo

de

Detecção

1B4

Detecta a

presença de

peças “corpo” no

sistema de

alimentação (High

- não tem peça/

Low - tem peça)

Sensor óptico Booleano E0.6

Dispositivo

de

Detecção

S1

Comando de início

do processo de

alimentação

(Botão start on)

Chave de contato Booleano E1.0

Dispositivo

de

Comando

S2

Comando de reset

do sistema de

alimentação

Chave de contato Booleano E1.1

Dispositivo

de

Comando

S3

Comando de

magazine empty

(botão magazine

empty)

Chave de contato Booleano E1.2

Dispositivo

de

Comando

S4

Comando de

controle

automático/manual

do sistema

Chave de contato Booleano E1.3

Dispositivo

de

Comando

S5

Comando de

parada do sistema

(Botão STOP)

Chave de contato Booleano E1.4

Dispositivo

de

Comando

NOTAUS

Comando de

parada de

emergência/ Botão

de QUIT

Chave de contato Booleano E1.5

Dispositivo

de

Comando

S6

comando de

comunicação

remota

Chave de contato Booleano E1.6

Dispositivo

de

Comando

 27

4.2 Arquitetura do ambiente distribuído do subsistema de

Alimentação

Neste projeto foram desenvolvidos os programas computacionais para a

interação entre os usuários e operadores locais e remotos do subsistema de

alimentação de maneira flexível e distribuída. Neste ambiente um usuário tipo

cliente pode fazer uma ordem de pedido de maneira interativa e que esta

ordem de pedido é executada automaticamente por um teleoperador disponível

(aqui chamado de op.Alimentacao), sem a necessidade de sua presença física

nas instalações do subsistema de alimentação. Para assegurar a execução dos

serviços devidos, é necessário implementar acordos de conexão não pré-

fixados (ou seja, sem a prévia definição de “quando”/ “onde” ou “como” será o

acesso) e de escolhas flexíveis (isto é, sem a imposição ou pré-definição) de

colaboradores (LEAL&BAX, 2001). Neste contexto, como dito anteriormente,

WSs se configuram como a solução adequada a este problema, já que

permitam uma interação transparente entre serviços, pois colaboradores

distintos, mesmo usando tecnologias e plataformas diferentes, podem se

conectar de maneira padrão (MICROSOFT, 2009a). As rotinas computacionais

responsáveis por essa integração de diversos agentes será denominada neste

trabalho por software de coordenação.

Figura 6 - Arquitetura do ambiente distribuído proposto

 28

A Figura 6 ilustra o ambiente distribuído considerado neste projeto. Este

ambiente é gerenciado por um SCTSP. O SCTSP é entendido assim como um

tipo de usuário do subsistema de alimentação. Como neste trabalho o escopo

não é mostrar como o SCTSP é implementado, será utilizada a denominação

“cliente” para a atuação deste tipo de usuário. O “cliente” é assim o usuário que

solicita uma ordem de pedido de peça ao software de coordenação.

Por sua vez, entende-se por “supervisório” um tipo de usuário

responsável pela interação entre os usuários “cliente e teleoperadores com o

subsistema de alimentação. O software supervisório comunica-se com o

software de coordenação e com o CLP do subsistema de alimentação, de

acordo com a Figura 7. O CLP utilizado neste projeto possui uma CPU

(unidade de processamento) instalada numa placa que está no barramento

principal de um computador local. A placa de IO (sinais de entradas e saídas)

do CLP está num gabinete próximo ao equipamento/dispositivos do subsistema

de alimentação e a comunicação entre a CPU e a placa de IO é feita via

PROFIBUS (SIEMENS, 2007a). A comunicação entre o programa de controle

do subsistema que está na CPU do CLP e o software supervisório é feita via

OPC.

Figura 7a – Interação entre os programas computacionais desenvolvidos

 29

Figura 7 b - Configuração do controle local do subsistema de alimentação

O usuário tipo teleoperador indicado na Figura 6, é o op.Alimentação.

Este usuário representa os operadores do subsistema, que podem ou não

estarem fisicamente próximos ao equipamento/dispositivos do subsistema de

alimentação. O Op.Alimentação tem dois modos de atuação sobre o

subsistema: monitoração e teleoperação. A seguir, são apresentados os

“requisitos de atuação” para este usuário, bem como os “casos de usos”

considerados.

4.2.1 Requisitos do Subsistema de Alimentação

Ao conceber um sistema, deve-se ter um consenso sobre o que o

sistema deve fazer, porém é importante ressaltar que a compreensão sobre os

requisitos necessários, em geral, evolui à medida que se implementa e se

interage com o determinado sistema. É essencial para o gerenciamento do

projeto expressar tais requisitos como casos de uso e diagramas de casos de

uso da UML (BOOCH; RUMBAUGH; JACOBSON, 2000).

 30

Caso de Uso do Subsistema de Alimentação

Para o subsistema de alimentação, foram definidos especificamente, os

casos de uso a seguir, que são fundamentais para a elaboração das interfaces

(programa computacional para que os teleoperadores interajam com o

subsistema de alimentação) e desenvolvimento da arquitetura do ambiente

distribuído.

Tabela 2 - Casos de uso do Op.Alimentação

Atores: op.alimentação: Quem aceita ou recusa o atendimento dos

pedidos de peça de inspeção. Adicionalmente, executa as

tarefas de monitoração ou teleoperação do sistema de

alimentação.

Descrição: Processa as tarefas de alimentação, monitoração e

teleoperação do sistema de alimentação de peças solicitadas

pelo cliente (SCTSP).

Pré-condições: O subsistema de alimentação tem que validar as condições

iniciais, ou seja, garantir que está apto a atender o(s) pedido(s)

do cliente (SCTSP).

Pós-condições: O subsistema de alimentação informa ao cliente (SCTSP).o

atendimento completo do pedido. Por outro lado, caso o pedido

proveniente do subsistema de inspeção não possa ser

atendido, é enviado a este um relatório com o motivo do não

atendimento.

Fluxo Básico de Eventos

Ações do Ator: Ações do Subsistema:

1-Ao op.alimentação é apresentada

uma mensagem de solicitação

proveniente do cliente (SCTSP).

 1.1- O subsistema de alimentação

confirma ao cliente (SCTSP) a aceitação

do pedido.

 31

2- Ao op.alimentação é apresentada

uma opção do modo de operação:

monitoração ou teleoperação.

 2.1.a- Se a opção de monitoração é

selecionada, o subsistema apresenta ao

op.alimentação uma interface própria para

a monitoração das atividades de produção

do subsistema de alimentação.

 2.1.b- Se a opção de teleoperação é

selecionada, o subsistema apresenta ao

op.alimentação uma interface própria para

a teleoperação das atividades de produção

do sistema de alimentação.

2.2.b. O op.alimentação executa os

comandos para as atividades de

alimentação.

Fluxo Alternativo de Eventos

Ações do Ator: Ações do Subsistema:

 3- Após o passo 1.1. o subsistema de alimentação

notifica ao cliente (SCTSP) que sua demanda não

poderá ser atendida.

Depois de estabelecidos os casos de usos para o op.Alimentação

(Tabela 2), são definidos os requisitos necessários para as interfaces deste,

bem como do supervisório e do cliente (SCTSP) que são modelados a seguir,

utilizando os diagramas de casos de uso (Figura 8) . Também, em seguida são

modelados os diagramas de casos de uso para o usuário tipo “supervisório”

(Figura 10) e tipo “cliente” (Figura 9).

 32

Figura 8 - Casos de uso do Op.Alimentação

 33

Figura 9 - Casos de uso do Cliente - SCTSP

Supervisório

Atualizar estado

do equipamento

Solicitar

telecomando

Registrar peças

entregues

Aceitar ordem de

pedido

«uses»

«uses»

«uses»

«uses»

Figura 10 - Casos de uso do Supervisório

 34

4.2.2 Software de Coordenação

Foi adotada a tecnologia de WS para o desenvolvimento do software de

coordenação. Este software faz a coordenação de serviços do subsistema de

alimentação. Este software também possui a arquitetura MVC (como explicado

na secção 2), de maneira adaptada a esta aplicação. Basicamente, existem 3

camadas: a “camada de WS”, a “camada de lógica de negócio” e a “camada de

acesso a dados”.

A “camada de WS’ é uma camada de interface (view) com os usuários

externos. Isto não significa que exista uma “tela” de visualização. O WS permite

uma interação padrão entre serviços, que são publicados em XML, permitindo

o acesso de qualquer interface que compreenda esses serviços. Dessa

maneira, os usuários “cliente”, “Op.Alimentação” e “supervisório” poderão

acessar o software de coordenação por paginas de internet (HTTP, JSP, ASP,

etc) e aplicativos em qualquer linguagem, celulares, palms, entre outros

dispositivos que possuam acesso a internet.

As “camadas de lógica de negócio” (controller) e a “camada de acesso a

dados” (model) serão acessadas pela “camada de WS”. Estas serão DLLs

(dynamic-link library), isto é, bibliotecas que serão consultadas quando

solicitado pelo WS, já que estas DLL são módulos que contém funções e dados

que podem ser consultados por outros módulos (aplicativos ou DLL)

(MICROSOFT, 2009b) . Como se pode concluir pelo nome, a “camada de

lógica de negócio” contem as ações do software interrelacionando os métodos

do WS com a “camada de acesso a dados”. Por sua vez, a camada de acesso

a dados é responsável pelo acesso e armazenagem de dados no banco de

dados deste ambiente distribuído.

A seguir, na Figura 11, tem-se uma ilustração das camadas descritas

anteriormente. Estas camadas foram subdivididas em categorias de atuação.

WSTeleoperação, se refere a métodos relacionados a atividades relacionadas

ao Teleoperador (Op.Alimentação) e ao Telecomando (monitoração e

teleoperação realizada pelo Op.Alimentação). WSAlimentação é a “camada de

WS” relacionada ao subsistema de alimentação, sendo responsável pela

interação com o “cliente” e “supervisório”, com a execução de atividades

relacionadas ao pedido, cadastro de cliente, estado de equipamento, etc.

 35

lnTeleoperador, bdTeleoperador são as “camadas de lógica de negócio” e

“acesso a dados” responsáveis pelas atividades relacionadas ao teleoperador.

Por sua vez, as camadas lnTelecomando e bdTelecomando estão relacionadas

ao Telecomando e as lnAlimentacao e bdAlimentacao estão relacionadas a

atividades referentes ao subsistema de alimentação, assim como o

WSAlimentação.

Figura 11 - Arquitetura do software de coordenação

a) Diagrama de Classes

Dada a arquitetura proposta anteriormente e ilustrada na Figura 12,

desenvolveu-se um diagrama de classes para este software de coordenação

de modo que, além de atender aos requisitos descritos nos “casos de uso” para

o Op.Alimentação (Teleoperador), cliente (SCTSP) e supervisório, ainda

respeite a estrutura requerida. Dada a quantidade de métodos existentes e o

número de interrelações entre as classes, optou-se por criar também um

diagrama de sequencia para cada caso de uso do software de coordenação,

possibilitando assim uma melhor visualização da lógica do software. A seguir,

também é feita uma descrição de cada um dos métodos existentes.

 36

+Registro(entrada Nome : String, entrada email : String)

+Autorizacao(entrada codteleop : Integer) : Boolean

+ModoOperacao(entrada codtelep, entrada modo) : Boolean

+InfEstadoTelecomando(entrada codteleop : Integer) : String

+SolicTelecomando(entrada codPedido : Integer, entrada Atividade : String) : Boolean

+AtualizaEstTelec(entrada codTeleop : Integer, entrada codPedido : Integer) : Boolean

+ParadaEmergencia()

«implementation class»WSTeleoperacao

+Registro(entrada Nome : String, entrada email : String)

+Autorizacao(entrada codteleop : Integer) : Boolean

+ModoOperaraco(entrada codteleop : Integer, entrada Modo : String) : Boolean

+DispTeleop(entrada codPedido : Integer) : Integer

+AtualizaStatusTeleop(entrada status : String)

+ParadaEmergencia()

ln_Teleoperador

+RegistroTeleop(entrada Nome : String) : Boolean

+RetornaCodTeleop(entrada Nome : String) : Integer

+Modo(entrada codteleop : Integer, entrada modo : String) : Boolean

+DispTeleop() : Integer

+VerificaModoOp(entrada codTeleop : Integer) : String

+AtualizaStatus(entrada status : String, entrada codTeleop : Integer)

bdTeleoperador

+InfEstadoTelecomando(entrada codteleop : Integer) : Object

+RegistraTelecomando(entrada codTeleop : Integer, entrada codPedido : Integer) : Boolean

+SolicTelecomando(entrada codPedido : Integer, entrada Atividade : String) : Boolean

+AtualizaEstTelecomando(entrada codPedido : Integer) : Boolean

+ParadaEmergencia()

ln_Telecomando

+RetornaEstadoTelecomando(entrada codteleop : Integer) : Object

+RegistraTelecomando(entrada codPedido : Integer, entrada codTeleop : Integer) : Boolean

+RegistraAtividade(entrada codPedido : Integer, entrada codCliente : Integer, entrada Atividade : String, entrada Estado : String) : Boolean

+AtualizaEstado(entrada codPedido : Integer, entrada Estado : String) : Boolean

+ConsultaTeleop(entrada codPedido : Integer) : Integer

bd_Telecomando

*

*

*

*

*

*

*

*

+RegistroCliente(entrada Nome : String) : Integer

+SolicPedido(entrada codCliente : Integer, entrada npecas : Integer) : Integer

+RegistraEstEquip(entrada estEquip : Object) : Boolean

+ConsultaEstEquip() : Object

+PecaEntregue(entrada npecas : Integer, entrada codPedido : Integer)

+DispAlimentacao() : Boolean

+ConsultaPedido(entrada codPedido : Integer) : Integer

WSAlimentacao

+Registro(entrada Nome : String) : Integer

+SolicPedido(entrada codCliente : Integer, entrada npecas : Integer) : Object

+RegistraEstEquip(entrada EstadoEquip : Object) : Boolean

+ConsultaEstEquip() : Object

+PecaEntregue(entrada npecas : Integer, entrada codPedido : Integer)

+DispAlimentacao() : Boolean

+ConsultaPedido(entrada codPedido : Integer) : Integer

ln_Alimentacao

+RegistroCliente(entrada Nome : String) : Boolean

+RetornaCodCliente() : Integer

+RegistroPedido(entrada codCliente : Integer, entrada codPedido : Integer, entrada npecas : Integer) : Boolean

+RegistraEstEquip(entrada EstEquip : Object) : Boolean

+ConsultaEstEquip() : Object

+ConsultaTotalPecas(entrada codPedido : Integer) : Integer

+AtualizaPecaEntregue(entrada codPedido : Integer) : Integer

+ConsultaPecasEntregues(entrada codPedido : Integer) : Integer

bd_Alimentacao

*

*

+DispEquip() : Boolean

+ProducaoPecas(entrada codPedido : Integer, entrada npecas : Integer) : Boolean

+RespostaTelecomando(entrada Telecomando : Boolean, entrada codPedido : Integer)

+ParadaEmergencia()

Supervisorio

*

*

*

*

**

*

*

*

*

*

*

*

*

Figura 12 - Diagrama de classes do software de coordenação

 37

Como pode ser observada no diagrama de classes da Figura 12, a

classe “Supervisório” é um WS, possuindo métodos são publicados no padrão

SOAP para que o software de coordenação tenha acesso. O WSAlimentação e

WSTeleoperação também são WS e disponibilizam serviços que são

acessados pelos usuários “Op.Alimentação” (teleoperador) e “cliente” (SCTSP).

As demais classes são acessadas e ativadas somente pelas WS da “camada

de WS”. O acesso ao banco de dados será feito somente pelas classes

(bdAlimentação, bdTelecomando e bdTeleoperador) da “camada de acesso a

dados”. Este banco de dados será melhor descrito no item 6.2.3.

b) Diagrama de Seqüência

Devido ao grande número de métodos torna-se difícil determinar a

seqüência global do comportamento do software. Com isto o diagrama de

seqüência foi aqui utilizado para representar os aspectos estruturais e

comportamentais do software de coordenação (LI & LILUS, 2000). O diagrama

de seqüência é uma das ferramentas UML usadas para representar interações

entre objetos de um cenário, realizadas através de operações ou

métodos (procedimentos ou funções). Este diagrama enfatiza a ordenação

temporal em que as mensagens são trocadas entre os objetos de um sistema.

Entende-se aqui por mensagens os serviços solicitados de um objeto a outro, e

as respostas desenvolvidas para as solicitações (BOOCH; RUMBAUGH;

JACOBSON, 2000).

Cadastro de Teleoperador

O caso de uso de cadastro de teleoperador está ilustrado a seguir no

diagrama de seqüência da Figura 13. Primeiramente, a interface do

Op.Alimentação ativa o serviço de registro do WSTeleoperação, que por sua

vez, consulta o método correspondente da classe lnTeleoperador. Esta classe,

responsável pela lógica de negócio, encaminha a informação referente ao

teleoperador (nome e e-mail) a classe bdTeleoperador, e se esta efetuar o

registro com sucesso no banco de dados (BD) e retornar o codTeleop, a classe

 38

lnTeleoperador enviará um e-mail ao endereço fornecido contendo este código

(codTeleop). O codTeleop é necessário para a autenticação do Op.Alimentação

no sistema. Como o escopo deste trabalho não é administração de acesso e

segurança do ambiente, não foi aqui desenvolvido nenhuma política de senhas.

Figura 13 - Diagrama de seqüência para o Registro de Teleoperador

Acesso do Teleoperador

O acesso do Op.Alimentação ao software de coordenação está ilustrado

no diagrama de seqüência da Figura 14. Primeiramente, o Op.Alimentação

informa o codTeleop ao WSTeleoperação, que por sua vez, informa este

código ao lnTeleoperador através do método autorização. Esta classe então,

solicita a alteração do “status” deste teleoperador para “online” à classe

bdTeleoperador, através do método “conexão”. Se a classe bdTeleoperador

conseguir alterar o campo “status” do BD através do índice fornecido pelo

“codTeleop”, será retornado um booleano com valor de TRUE a classe

lnTeleoperador. Por sua vez será informado ao WSTeleoperação que, por fim,

informa ao Op.Alimentação que a conexão foi realizada com sucesso.

 39

Figura 14 - Diagrama de seqüencia para o acesso do Teleoperador

Modo de Operação do Teleoperador

A escolha do modo de operação que o Op.Alimentação irá trabalhar é

modelada no diagrama de seqüência da Figura 15. Basicamente, o

Op.Alimentação deve selecionar um modo de operação (Teleoperação ou

Monitoração), sendo este modo e o codTeleop enviado ao WSTeleoperação. O

WS envia ao lnTeleoperador estes dados que, por sua vez, os informa ao

bdTeleoperador juntamente com a data e hora atual (campo “DataHora”).

Dessa maneira, o bdTeleoperador os registra no BD e, se isto for executado

com sucesso, um booleano é enviado a todas as camadas.

 40

Figura 15 - Diagrama de seqüência para a escolha do modo de operação

Cadastro do cliente

De maneira muito semelhante ao cadastro do teleoperador é o cadastro

do cliente (SCTSP) e seu diagrama de seqüência pode ser observado na

Figura 16. Primeiramente, a interface do cliente ativa o serviço de

RegistroCliente do WSAlimentação, que por sua vez, consulta o método

correspondente da classe lnAlimentação. Esta classe, responsável pela lógica

de negócio, encaminha a informação referente ao cliente (nomeCliente) a

classe bdAlimentação, e se esta efetuar o registro com sucesso no banco de

dados (BD) e retornar o codCliente, a classe lnAlimentação retorna o

codCliente ao WSAlimentação que por sua vez, o fornece ao cliente. O

codCliente é necessário para a autenticação do cliente no sistema. Como o

escopo deste trabalho não é administração de acesso e segurança do

ambiente, não foi aqui desenvolvida nenhuma política de senhas.

 41

Figura 16 - Diagrama de seqüência para o cadastro do cliente

Verificação de Disponibilidade do Subsistema de Alimentação

Um dos casos de uso do ator “cliente” é a consulta de disponibilidade do

subsistema de alimentação. A verificação desta disponibilidade é

necessária, pois o “cliente”, ou SCTSP, necessita gerenciar não somente o

subsistema de alimentação, mas o conjunto formado por todos os subsistemas,

e para isso é necessário saber a disponibilidade de todos os subsistemas para

orquestrar a execução global dos pedidos.

Resumidamente, o cliente verifica a disponibilidade com o

WSAlimentação, que encaminha o pedido a classe lnAlimentação. Esta classe,

por sua vez, verifica a disponibilidade de equipamento com o agente

“supervisório” e a disponibilidade de Teleoperador com o lnTeleoperador.

Ao analisar este trabalho de maneira independente a ação de

orquestração do STCSP, isto é, na situação em que o ator “cliente” atua

somente como um cliente do subsistema de alimentação, tem-se que ao fazer

uma solicitação de pedido, é necessária novamente a verificação de

disponibilidade de teleoperador e do equipamento. Esta situação é analisada

no diagrama de seqüência referente ao caso de uso de solicitação de pedido

(Figura 17).

 42

Figura 17 - Diagrama de seqüência para a verificação de disponibilidade do subsistema

de alimentação

Solicitação de Pedido

A seguir tem-se o diagrama de seqüência para caso de uso de

solicitação de pedido (Figura 18). Este diagrama de seqüência é um pouco

mais elaborado que os demais, pois a camada de “lógica de negócio”,

lnAlimentação, verifica a disponibilidade do equipamento com o supervisório e

também a disponibilidade de um teleoperador para que seja possível a

concretização do pedido e só assim armazená-lo no BD através do

bdAlimentação.

 43

Figura 18 - Diagrama de seqüência para a solicitação de pedido

Como se pode observar na Figura 18, primeiramente o cliente faz a

solicitação do pedido, informando ao WSAlimentação o número de peças

desejadas e o seu codCliente. Em seguida, o pedido é encaminhado a camada

de “lógica de negócios” (lnAlimentação), que verifica a disponibilidade do

subsistema de alimentação com o supervisório, através do método

“DispEquip()”. Ela verifica também a disponibilidade de teleoperador através do

método “DispTeleop” que pertence a classe lnTeleoperador. Esse método faz a

classe bdTeleoperador verificar no banco de dados se existe algum

teleoperador cujo “status” está “online”. Caso existe, é retornado a classe

lnAlimentação o seu código codTeleop e seu “status” é alterado para

“trabalhando”.

Se a classe lnAlimentação confirmar a disponibilidade do equipamento e

de teleoperador, o pedido pode ser registrado. Assim, através do método

RegistraPedido (codPedido, codCliente, npecas) da classe bdAlimentação, os

dados do pedido são registrados no BD. Em seguida, lnAlimentação solicita a

execução do pedido ao supervisório, através do método

ProducaoPecas(codPedido, npecas). Por fim, é retornado ao WSAlimentação e

ao cliente se o pedido pode ser cadastrado e qual o codPedido caso ele tenha

sido feito com sucesso.

Infelizmente, devido à restrição de espaço para a representação do

diagrama da Figura 18, não foi descrito o registro das informações no BD,

 44

porém subentende-se que este está sendo feito pela “camada de acesso a

dados”, assim como ocorre nos demais casos.

Execução de Pedido: Verificação do Modo de Operação

Para assegurar a execução de cada ação referente à produção de uma

peça, o supervisório deverá solicitar o telecomando ao WSTeleoperação. Caso

o modo de operação do teleoperador deste pedido seja de “monitoração”, não

será necessário aguardar a autorização do Teleoperador para a execução da

atividade. Caso o modo esteja em “teleoperação”, o supervisório deve aguardar

a autorização do op.Alimentação para prosseguir. O diagrama de seqüência

(Figura 19) a seguir ilustra a verificação do modo de operação durante a

execução do pedido.

Figura 19 - Diagrama de seqüência para execução do pedido: verificação do modo de

operação

Execução do Pedido: Modo Monitoração

Dando continuidade ao diagrama de seqüência anterior, se o modo de

operação for de monitoração, ter-se-á o diagrama de seqüência da Figura 20.

Quando o modo for de monitoração, simplesmente será atualizado no BD,

 45

através da classe bdTelecomando, a atividade que é executada no subsistema

de alimentação. Após esse registro, a classe lnTelecomando indica ao

supervisório que ele pode prosseguir com a atividade (método:

RespostaTelecomando()).

Figura 20 - Diagrama de seqüência da execução de pedido: Monitoração

Execução do Pedido: Modo Teleoperação

A diferença básica entre o modo de monitoração e o modo de

teleoperação está no método RegistraAtividade (codPedido, codTeleop,

Atividade, estado). Isto porque, quando o supervisório solicita um telecomando,

é registrada no BD a atividade atual que será executada no subsistema de

alimentação. Caso o modo for de monitoração, a variável “estado” receberá o

valor “concluído” e a classe lnTelecomando envia a resposta do telecomando

para o supervisório. Se o modo é de teleoperação, a variável “estado” é

registrada com o valor “pendente”, para que o Op.Alimentação possa consultar

as atividades pendentes e autorizá-las para que a classe lnTelecomando possa

enviar uma resposta ao supervisório. A Figura 21 ilustra esse processo de

execução de pedido no modo de teleoperação.

 46

Figura 21 - Diagrama de seqüência de execução de pedido: modo Teleoperação

Informação sobre o estado – Teleoperação

O Op.Alimentação quando está em modo de teleoperação precisa

consultar o software de coordenação para saber se existe alguma atividade

pendente no subsistema de alimentação e assim autorizar sua execução. A

verificação se o estado da atividade está pendente é feita pela classe

lnTelecomando. No diagrama de seqüência da Figura 21 é mostrado como esta

consulta é feita. Em seguida, no item “atualização de estado” é mostrada a

autorização de execução desta atividade.

Figura 22 - Diagrama de seqüência informação sobre o estado das atividades –

Teleoperação

Atualização de estado - Teleoperação

 47

Quando em modo de teleoperação, o Op.Alimentação deve consultar

periodicamente se existe alguma atividade que está pendente em algum pedido

do subsistema de alimentação e autorizá-la ou não. Caso a autorize, seu

“estado” passa a ser “concluído” e a lógica de negócio (lnTelecomando), envia

uma resposta ao subsistema indicando que a atividade pode ser executada

(RespostaTelecomando (ok)), de acordo com o ilustrado no diagrama da Figura

23.

Figura 23 - Diagrama de seqüência para atualização de estado: Teleoperação

Registro de peças entregues

Para que o software de coordenação tenha um registro ao longo do

tempo da quantidade de peças que já foram entregues, desenvolveu-se um

método que atualiza periodicamente o número de peças entregues. O

“supervisório” assim que finaliza uma peça, aciona o método do

WSAlimentação informando o número total de peças entregues. Esta

seqüência pode ser observada no diagrama de seqüência da Figura 24.

Esta atualização é importante para que a classe lnAlimentação possa

acompanhar a execução do pedido e quando as peças entregues for igual a

quantidade de peças solicitadas pelo cliente, esta classe deverá finalizar a

ordem de pedido e liberar o teleoperador para que execute outro atendimento.

 48

Figura 24 - Diagrama de seqüência para atualização de peças entregues

Consulta de peças entregues

Também, um dos casos de uso do “cliente” é consultar o pedido,

verificando quantas peças já foram entregues. Para isso, o WSAlimentação

disponibiliza um método que permite realizar esta consulta, de acordo com o

diagrama de seqüência da Figura 25. De acordo com o codPedido, é realizada

uma consulta no BD e retornado o número de peças (npeca) já produzidas.

Figura 25 - Diagrama de seqüência para a consulta de peças entregues

Registro dos estados dos equipamentos

É importante armazenar periodicamente os estados dos sensores,

atuadores e demais dispositivos presentes no subsistema de alimentação. Isto

 49

permite que o Op.Alimentação tenha acesso a informação atualizada sobre o

estado do equipamento/subsistema. Este armazenamento é descrito no

diagrama de seqüência da Figura 26.

Primeiramente, o supervisório acessa o WSAlimentação e através do

método RegistraEstadoEquipamento, envia um objeto da structure

“Equipamento” (criada na linguagem VB.NET e que contém propriedades

referentes a cada dispositivo) com todos os estados dos dispositivos. Este

objeto é enviado a classe lnAlimentação e em seguida ao bdAlimentação, onde

é registrada no BD.

Figura 26 - Diagrama de seqüência para o registro de informação sobre dispositivos do

subsistema de alimentação

Consulta dos estados dos equipamentos

Para que o Op.Alimentação possa monitorar e teleoperar o subsistema

de alimentação, é necessário conhecer os estados atuais dos dispositivos. O

diagrama de seqüência da Figura 27 mostra como a consulta destes estados é

feita. A classe lnAlimentação irá consultar o dado mais recente e através do

bdAlimentação será disponibilizada uma tabela com os estados dos

dispositivos (sensores, atuadores, etc).

 50

Figura 27 - Diagrama de seqüência para consulta de estado de dispositivos do

subsistema de alimentação

Parada de Emergência

Como o Op.Alimentação pode acompanhar o estado dos dispositivos,

monitorando e teleoperando este subsistema produtivo, tem-se que ele deverá

ter acesso a parada de emergência deste SP, caso detecte alguma situação

anormal ou de perigo. O diagrama de seqüência deste caso de uso está na

Figura 28. Basicamente, o Op.Alimentação solicita a “Parada de Emergência”

ao WSTeleoperação. Este por sua vez, encaminha o pedido a classe

lnTelecomando, que informa a classe lnAlimentação e por fim, realiza a parada

de emergência no agente “supervisório”.

Figura 28 - Diagrama de seqüência para parada de emergência

 51

4.2.3 Banco de dados

Dados as classes e métodos modelados anteriormente para o software

de coordenação desenvolveu-se um banco de dados para atender as

necessidades destas rotinas computacionais. Na Figura 29, tem-se o modelo-

entidade deste BD.

Figura 29 - Modelo entidade relação do BD utilizado

No modelo da Figura 29 pode-SE observar que as tabelas são

indexadas pelos campos que possuem PK (primary-key). A seguir, tem-se uma

descrição de cada tabela:

• Cliente: Esta tabela contém as informações referentes ao cliente.

Cada cliente tem um nome (string) e um codCliente (Integer) para

indexação desta tabela. O campo estado (string) poderá receber

os valores “ativo” e “inativo”;

• Pedido: Esta tabela armazena as informações dos pedidos

realizados pelo subsistema. Cada pedido conterá um codPedido

(integer) para sua indexação. São também armazenadas as

quantidades de peças solicitadas no campo npecas (integer), e a

quantidade de peças entregues (integer);

 52

• Telecomando: Esta tabela contem as informações referentes ao

telecomando que está sendo executado no momento atual. Esta

tabela é indexada pelo codPedido a que se refere o telecomando.

O campo “atividade” é uma string, que contém a descrição da

atividade que está sendo realizada. O campo “estado” é uma

string e contem a informação sobre a execução atual da atividade.

Existem somente duas opções para o campo “estado”:

“pendente”, se a atividade ainda não foi executada; e “concluída”,

se a atividade já foi concluída. O campo “datahora” contem a

informação sobre a hora em que a atividade foi concluída para se

manter um histórico de finalização do pedido.

• Teleoperador: Esta contém as informações sobre os

Op.Alimentação existentes. Todos os campos desta tabela são

strings. O campo “status” se refere a situação do teleoperador,

isto é, se ele está “online” (disponível para execução de pedido),

“ocupado” (se já estiver fazendo um pedido) ou “offline” (se não

estiver logado no sistema). O campo “modoop” , se refere ao

modo de operação selecionado pelo teleoperador e pode possuir

os valores de “teleoperação” e “monitoração”.

• Equipamento: Esta tabela é indexada pelo campo

“datahora”(datetime), e contém a situação dos dispositivos de

detecção e de atuação.

4.3 Instalações Físicas

O subsistema automatizado de montagem que estava instalado no

Laboratório de Sistemas de Automação da Escola Politécnica era um produto

da empresa FESTO baseado numa arquitetura tipo stand-alone, isto é, sem

comunicação com o mundo externo, e do ponto de vista interno tinha uma

estrutura centralizada das funções de supervisão e controle. Para emular um

sistema de manufatura disperso e distribuído foi assim concebido e

implementado um tipo de retrofitting desse sistema de modo que cada estação

 53

de trabalho tenha autonomia para programar e executar seus serviços e que a

comunicação entre estas estações seja via internet atendendo assim uma

estrutura aberta e distribuída. Desse modo, cada estação de trabalho é agora

vista como um subsistema produtivo com seu próprio controle local. O

hardware de controle local de cada subsistema foi implementado através de

CLPs. O CLP adquirido para o subsistema de alimentação foi o do fabricante

SIEMENS AG, com a seguinte configuração:

• CPU 412-2 PCI: Esta CPU (Central Processing Unit) é instalada

no barramento PCI do computador local (Figura 30). Possui dois

modos de comunicação, PROFIBUS e MPI, utilizados para se

comunicar com o módulo de IOs distribuído ETM200.

Figura 30 - CPU 412-2 PCI (Fonte: SIEMENS, 2002c)

• ET200M: Trata-se de um módulo de IOs distribuído, que foi

instalado no gabinete que fica fisicamente próximo aos

dispositivos de controle do subsistema de alimentação. Este

módulo possui um trilho DIN, onde são conectados o módulo de

comunicação PROFIBUS IM153-3, os dois módulos de IO com 8

entradas digitais e 8 saídas digitais cada um, e a fonte PS307.

Esta fonte converte a tensão de rede (110/220 V) para a tensão

DC que é utilizada na alimentação dos circuitos do módulo

ET200M e dos dispositivos de atuação e monitoração do

subsistema. O módulo de comunicação IM153-3 é responsável

 54

pela comunicação entre a CPU 412-2 e o módulo ET200M, sendo

esta comunicação estabelecida via PROFIBUS. A Figura 31

ilustra a configuração do módulo ET200M utilizado.

Figura 31 - Módulo ET200M (SIEMENS, 2000d)

As fiações e conexões elétricas foram refeitas e utilizou-se anilhas para

identificar o cabeamento e facilitar a realização de reparos. O diagrama elétrico

esquemático da instalação está no ANEXO A.

4.3.1 Programação do CLP

O programa do CLP foi desenvolvido em linguagem Ladder e está no

ANEXO B. Ele foi construído de modo a facilitar a interação com o software

supervisório sobre ele. A idéia principal é que cada passo de operação seja

ativado através de uma flag, isto é, ao mudar o valor de uma variável na

memória do CLP, será iniciada a execução da operação em questão.

Para o subsistema de alimentação existem cinco operações principais:

• mEstendeCilindro - Responsável por avançar o cilindro que

posiciona a peça (1A+);

• mRecuarCilindro – Responsável por recuar o cilindro que

posiciona a peça (1A-);

• mBracoHorario – Responsável por movimentar o braço giratório

para o subsistema de inspeção (3A+);

 55

• mBracoAntiHorario – Responsável por movimentar o braço

giratório para o subsistema de alimentação (3A-);

• mDesligaVentosa – Responsável por desligar o vácuo que

segura a peça durante o transporte;

• mLigaVentosa – Responsável por ligar o vácuo que segura a

peça durante o transporte;

Como já dito, para que o software supervisório altere o valor destas

variáveis acima foi utilizada a comunicação OPC. Para isso, foram

estabelecidas configurações no programa do CLP para que este atue

associado a um OPC Server no computador em que está instalada a placa da

CPU. Este OPC Server é responsável pela troca de dados entre a CPU e o

software supervisorio (OPC Client).

 Primeiramente, no software “Set PC/PG Interface” do pacote SIMATIC

NET fornecido pela SIEMENS para configuração da CPU, selecionou-se a

opção “PC Internal (local)”, configurando assim o modo que será utilizado para

realizar esta troca de dados (Figura 32).

Figura 32 - Configuração do PG/PC Interface

 56

Em seguida, no software “Station Configurator Editor”, também do

pacote SIMATIC NET, selecionou-se, no primeiro índice, o OPC Server, como

indicado na Figura 33. Isto configura a CPU 412-2 PCI como OPC Server para

o computador em que está instalada (Figura 33). Como se trata de uma CPU

412-2, no segundo índice é que esta foi configurada.

Figura 33 - Configuração do Station Configurator Editor

 A programação do CLP e a configuração de Hardware (Hardware

Configuration) existente foram realizadas no software STEP S7, também

presente no pacote SIMATIC NET. Deve-se também acrescentar o OPC

Server neste item, como ilustra a Figura 34. A configuração utilizada para o

subsistema de alimentação encontra-se no ANEXO B.

 57

Figura 34 - Configuração no STEP 7

Por fim, configurou-se o OPC Scout (Figura 35), que assim como os

outros, é um software do pacote SIMATIC NET que foi instalado junto com a

CPU 412-2 PCI. A seguir, são apresentadas as variáveis do programa do CLP

que são monitoradas e alteradas pelo software supervisório. Tais variáveis são

mapeadas no OPC Scout para que a troca de informações seja realizada com

sucesso. Detalhes de toda esta configuração podem ser encontrados no

manual “Industrial Communication Commissioning: Manual and Quick Start” da

Siemens (SIEMENS, 2008e).

 58

Figura 35 - Configuração do OPCScout (Fonte: SIEMENS, 2008e)

Na Tabela 3, seguem as variáveis que foram configuradas para o

subsistema de alimentação:

Tabela 3 - Variáveis mapeadas para comunicação OPC

Nome do Item Identificador Descrição

S7:[S7Alimentacao]iCilindroRecuado R000 Lê o sensor que identifica se o cilindro foi recuado

S7:[S7Alimentacao]iCilindroEstendido R001 Lê o sensor que identifica se o cilindro foi estendido

S7:[S7Alimentacao]iBracoAlimentacao R002 Lê o sensor que informa se o braço está sobre a alimentação

S7:[S7Alimentacao]iBracoInspecao R003 Lê o sensor que informa se o braço esta sobre a inspeção

S7:[S7Alimentacao]iPecaVentosa R005 Lê o sensor que identifica se a peca foi presa na ventosa

S7:[S7Alimentacao]iSensorPecasBuffer R006 Lê o sensor que detecta a presença de pecas no buffer

S7:[S7Alimentacao]mEstendeCilindro W000 Estende o cilindro que tira a peça do buffer

S7:[S7Alimentacao]mRecuarCilindro W001 Recua o cilindro que retirou a peça do buffer

S7:[S7Alimentacao]mBracoHorario W002 Movimenta o braco sentido horário

S7:[S7Alimentacao]mBracoAntiHorario W003 Movimenta o braco no sentido anti-horário

S7:[S7Alimentacao]mLigaVentosa W004 Liga a ventosa

S7:[S7Alimentacao]mDesligaVentosa W005 Desliga a ventosa

4.4 Software Supervisório

A listagem/codificação do software supervisório que foi desenvolvido

está no ANEXO D. Para simplificar a implementação deste software, utilizou-se

a mesma tecnologia que a usada para o desenvolvimento do software de

Coordenação, a tecnologia de WS.

 59

Neste trabalho, para acessar os WSs desenvolvidos, tanto no software

de coordenação quanto neste supervisório, foram utilizadas páginas

desenvolvidas em HTML (Hyper Text Markup Language) e Javascript. HTML é

uma linguagem de marcação, onde as “marcas” são utilizadas para se

desenvolver páginas da web acessadas por qualquer navegador

(W3CSCHOOLS, 2009a). Javascript, por sua vez, é uma linguagem de script

desenvolvida para adicionar interatividade às páginas em HTML

(W3CSCHOOLS, 2009b). Trata-se de uma linguagem de programação

relativamente simples, interpretada, que não necessita de licença para ser

utilizada (W3CSCHOOLS, 2009b). O código Javascript é interpretado por

qualquer browser e pode ser inserido dentro de um código em HTML

(W3CSCHOOLS, 2009b).

O software supervisório é um WS, por isso, tem um tempo de vida pré-

definido pelo servidor em que está instalado (MELO, 2008). Sendo assim, para

que o supervisório se mantenha em funcionamento, controlando o subsistema

de alimentação, utilizou-se a função Javascript “setTimeOut”. Esta função

possui dois parâmetros: o primeiro é o nome do método criado que deverá ser

chamado, e o segundo parâmetro é o tempo em milisegundos de chamada. Por

exemplo, a função setTimeOut(“AcordaSupervisorio”, 2000), irá chamar o

método “AcordaSupervisório”, desenvolvido no código Javascript da página, a

cada 2 segundos.

Este método, “setTimeOut” é uma das ferramentas AJAX (Asynchronous

Javascript and XML) disponibilizadas no ambiente de desenvolvimento Visual

Studio 2008, utilizado neste trabalho. AJAX é um modo de programação que

permite a execução de chamadas assíncronas de clientes (KHOSRAVI, 2006).

O software supervisório, além dos métodos descritos no diagrama de

classes da Figura 12, que são essenciais para o correto funcionamento do

software de coordenação, tem outros dois métodos: “ConectaOPC” e o

“AcordaSupervisorio”.

O método “ConectaOPC” é responsável por configurar o software

supervisório como OPCClient para o servidor OPC configurado na CPU 412-2

PCI do CLP. Ele utiliza uma DLL desenvolvida no Laboratório de Sistemas de

Automação (LSA da Escola Politécnica da USP), a “opcconn.dll”. Esta DLL

 60

utiliza a seguinte seqüência de comandos (Figura 36), disponibilizados no

componente COM “Siemens OPC DA Automation 2.0”, para realizar a conexão.

Figura 36 - Seqüência de comandos para estabelecer a conexão OPC Client (Fonte:

Siemens, 2008f)

O método “AcordaSupervisorio”, por sua vez, é responsável por executar

as operações do programa do CLP. Seu fluxo lógico é dado de acordo com a

Figura 37. Basicamente, este método verifica se existe algum pedido em

andamento, e caso exista, solicita autorização ao WSTeleoperação para a

próxima atividade ser executada. O WSTeleoperação, responde através do

método “RespostaTelecomando” do software do supervisório, que em seguida,

realiza a próxima atividade pendente. Para o correto funcionamento do

subsistema de alimentação, as seqüências de operações a serem realizadas

são, respectivamente: estende pistão 1A, movimenta braço giratório 3A para o

subsistema de alimentação, liga geração de vácuo, movimenta braço giratório

3A para o subsistema de inspeção, desliga geração de vácuo, recua pistão 1A.

 61

Figura 37 - Fluxograma para o Método “AcordaSupervisorio”

 62

4.5 Interfaces dos Usuários

Para verificar e validar o processo de supervisão e controle de um

sistema produtivo disperso construiu-se as páginas da Web mostradas a

seguir. Estas páginas foram elaboradas utilizando a linguagem de marcação

HTML e Javascript, estando seus códigos no ANEXO E. É importante frisar que

as páginas foram desenvolvidas de maneira a atender os requisitos

especificados na seção 6.3.1.

Acesso Principal

A página de acesso principal (default.aspx), Figura 38, possui uma breve

apresentação sobre o subsistema de alimentação e duas opções de escolha

“Cliente” e “Teleoperador”.

Figura 38 - Página de acesso principal

 63

Página de Login do Cliente

A página de login do cliente (Figura 39, cliente.aspx) possui duas partes,

uma para cadastro, caso seja um novo usuário e não possui ainda um “Código

de Cliente”, ou a opção de Login, caso já seja um usuário cadastrado e possua

login. É importante frisar que só é possível acessar a página de operações do

cliente, se o login for efetuado com sucesso.

Figura 39 - Página de login do Cliente

Página de Operações do Cliente

A página de operações do cliente (Figura 40, opCliente.aspx) permite

que ele solicite um pedido, verifique a disponibilidade do subsistema de

alimentação, e confira a execução do pedido já realizado.

 64

Figura 40 - Página de Operações do Cliente

Página de Login do Teleoperador

A página de login do Teleoperador (Figura 41, teleop.aspx) possui duas

partes, uma para cadastro, caso seja um novo usuário e não possui ainda um

“Código de Teleoperador”, ou a opção de Login, caso já seja um usuário

cadastrado e possua um código de acesso. É importante frisar que só é

possível acessar a página de operações do teleoperador, se o login for

efetuado com sucesso.

 65

Figura 41 - Página de login do Teleoperador

Página de Operações do Teleoperador

A página de operações do teleoperador (Figura 42, opTeleop.aspx)

permite que o teleoperador escolha o modo de operação (monitoração ou

teleoperação), verifique o código do pedido que está executando, visualize o

subsistema de alimentação, autorize ou não a execução da atividade pendente,

efetue parada de emergência e, por fim, verifique o estado dos equipamentos

do SP.

 66

Figura 42 - Página de Operações do Teleoperador

 67

5. CONCLUSÕES

A primeira etapa de elaboração do projeto consistiu em uma pesquisa

geral sobre os fundamentos necessários para a implementação deste ambiente

distribuído proposto, assim como uma definição dos requisitos e casos de usos

do subsistema de alimentação, que é o caso de estudo deste projeto. Em

seguida, foi elaborado o projeto e modelagem da arquitetura deste ambiente

distribuído propriamente dito. Para isto, foram utilizadas as ferramentas UML

para modelagem e a arquitetura MVC para o desenvolvimento do software de

coordenação, procurando aproximar este projeto ao máximo possível da

realidade industrial em que se aplica. Esta estruturação também permitiu a

organização dos softwares e, juntamente com a modelagem em UML, foi

possível uma melhor a análise do comportamento do software e a interação

global de cada serviço e método criado.

Constatou-se que para atingir o objetivo principal deste projeto, que é

possibilitar que um subsistema de um sistema produtivo disperso seja

controlado e manipulado de maneira distribuída, é necessário assegurar que

todas as interações das diversas partes do sistema sejam devidamente

especificadas e que mecanismos de controle sejam implementados por razões

da confiabilidade e segurança. Não é possível permitir que atores emitam

ordens distintas e que produzam um resultado inesperado no comportamento

do sistema. Por isso, foi importante manter a estruturação e a documentação

do software desenvolvida sempre atualizada.

O software supervisório foi desenvolvido utilizando-se WS, porém este

poderia ser elaborado como um aplicativo do Windows, que seria executado

desde o start-up do sistema operacional. Esta solução seria mais segura que a

solução adotada neste trabalho, uma vez que o software supervisório estaria

sempre em funcionamento, atuando sobre o subsistema. No entanto, se esta

solução fosse adotada, a comunicação do software supervisório com o

software de coordenação deveria ser estabelecida via TCP/IP, o que poderia

ser mais uma fonte de problema, caso esta comunicação não fosse

estabelecida com sucesso.

 68

É importante frisar que as páginas da Web desenvolvidas foram criadas

apenas para testar e avaliar o funcionamento do ambiente distribuído, sendo

que outras páginas ou aplicativos podem ser desenvolvidos, para se comunicar

com os WSs do software de coordenação, explorando melhor o conceito de

usabilidade, portabilidade, etc.

Por fim, o uso de WS e o desenvolvimento de uma arquitetura orientada

a serviços possibilitam que este ambiente produtivo seja: colaborativo, no

sentido que permite a atuação de diversos atores simultaneamente; e

distribuído, uma vez que os WSs podem ser acessados por qualquer

computador conectado a internet, em qualquer local. Em um sentido mais

amplo, o software de coordenação desenvolvido neste trabalho pode ser

expandido para envolver a outros subsistemas do sistema produtivo, uma vez

que a especificação funcional para o subsistema está restrita apenas ao

software supervisório, onde ocorre a comunicação com o CLP local.

 69

6. REFERÊNCIAS BIBLIOGRÁFICAS

Almeida, R. R. Model-View-Controller. Disponível em

http://www.dsc.ufcg.edu.br/~jacques/cursos/map/html/arqu/mvc/mvc.htm

 Acessado em Junho de 2009.

Adlemo A., Andreasson S. Balanced automation in flexible manufacturing,

disponível em systems http://pierre.ici.ro/ici/revista/sic1996_2/art8.html,

acessado em Junho de 2008.

Booch G. , Rumbaugh J., Jacobson I., UML : Guia do Usuário. 14ª

Reimpressão. Rio de Janeiro : Elsevier,2000.

Business Wire, 2006, SOA Software Products Drive More Than 10 Billion

Web Service Transactions; Company's Products Manage and Secure over

425 Million Transactions Per Month in Production at the World's Largest

Companies, Disponível em:

<http://findarticles.com/p/articles/mi_m0EIN/is_2006_Sept_18/ai_n16728778

/>. Acessado em Junho de 2009.

Fonseca, M. O.. OPC, OLE for process control.

http://www.pims.com.br/pt/divsist/auto/opc/D453319.swf acessado em

Março de 2009

Goldberg K, Song D. Unsupervised scoring for scalable Internet - based

collaborative teleoperation. In: Proceedings of IEEE Int. conf. on Robotics &

Automation, New Orleans, USA, 2004

Gorodia A.; Elhajj I. Internet based robots: applications, impacts challenges

and future direction. In: IEEE Workshop on Advanced Robotics and its

Social Impacts, 2005.

 70

Habib M.K. Telecooperation: Concept, applications and the need from the

Internet. In: Symposium Proceedings of the Japan Institute of Electronics

Information and Communication Engineers, Kyushu, Japan, 2000.

Jensen, K.; Coloured Petri nets: basic concepts, analysis methods and

practical use. SpringerVerlag, Berlin, 1992.

Junqueira F, Miyagi P.E. A new method for the hierarchical modeling of

productive systems. In: 7th IFIP International Conference on Information

Technology for Balanced Automation Systems in Manufacturing and

Services, Niagara Falls, Ontario, Canada , 2006.

Khorasvi, S. Professional Asp.Net 2.0 Server Control and Component

Development. John Wiley & Sons, 2006.

Kreger, H., Web Services Conceptual Architecture (WSCA 1.0), IBM

Software Group, 2001. www-

4.ibm.com/software/solutions/webservices/resources.htm acessado em

janeiro de 2008.

Kyatera, Plataforma óptica fiber-to-the-lab, 2003.

http://kyatera.incubadora.fapesp.br/portal/projeto-kyatera/rede-kyatera/

 acessado em março de 2008.

Leal, G. J.; Bax, M. Serviços web e evolução de serviços em TI. Datagrama

zero. Revista de Ciência da Informação. Vol.2, No.2. Abril, 2001.

Li, X.; Lilus, J.; Checking compositions of UML sequence diagrams for

timing inconsistency. In: Software Engineering Conference, 2000. APSEC

2000.

Lira, D.N.; Melo, J. I. G.; Junqueira, F.; Morales, R.; Miyagi, P.E. Fault

detection in flexible assembly systems using Petri net. In: IEEE Latin

America Transactions. vol.6, No. 7, 2008.

 71

Melo, J. I. G.; Junqueira, F.; Morales, R.; Miyagi, P.E. A procedure for

modeling and analysis of service-oriented and distributed productive system.

In: CASE, IEEE, Washington, 2008

Microsoft. Web Services. http://msdn.microsoft.com/en-

us/library/ms978748.aspx acessado em março de 2009. (a)

Microsoft. Dynamic-link library. http://msdn.microsoft.com/en-

us/library/ms682589.aspx acessado em março de 2009. (b)

Microsoft. Visão geral de recursos e ferramentas dos SQL Server 2008.

http://msdn.microsoft.com/pt-br/library/bb500397.aspx acessado em maio

de 2009. (c)

Microsoft. Introduction to ActiveX Controls. http://msdn.microsoft.com/en-

us/library/aa751972(VS.85).aspx acessado em novembro de 2009 (d).

Microsoft. WSE Architecture. http://msdn.microsoft.com/en-

us/library/aa529139.aspx acessado em novembro de 2009(e).

Papazoglou, M.P.; Georgakopoulos, D., Service oriented computing,

Communications of the ACM, Vol. 46, No. 10, pp. 25–28, 2003.

Reckziegel, M. Protocolo de Transporte Padrão SOAP.

http://imasters.uol.com.br/artigo/4379/webservices/protocolo_de_transporte

padrao-_soap/ acessado em Novembro de 2009.

Siemens. S7-300 Automation Module Data Manual. Automation and Drives.

Nurmberg. Germany. Abril, 2007(a).

Siemens. Aplication for Human Machine Interfaces. Automation and Drives.

Nurmberg. Germany. Julho, 2004(b).

 72

Siemens. WinAC Controlling with CPU 412-2 PCI/ CPU 416-2 PCI Setting-

up CPU Version 3.3. Siemens AG. Nurmberg. Germany. 2001-2002. (c)

Siemens. ET 200M Distributed IO Device. Siemens AG. Nurmberg.

Germany. 2000. (d)

Siemens. Industrial Communication Commissioning: Manual and Quick

Start. Siemens AG. Nurmberg. Germany. 2008. (e)

Siemens. Industrial Communication with PG/PC Volume 2 - Interfaces.

Siemens AG. Nurmberg. Germany. 2008. (f)

Socrades. website http://www.socrades.eu Acessado em Novembro de

2009.

Taltech. Understanding Dynamic Data Exchange.

http://www.taltech.com/TALtech_web/support/dde_sw/ddeunder.htm.

Acessado em Janeiro de 2009.

W3School. Introduction to HTML. Disponível em

http://www.w3schools.com/html/html_intro.asp Acessado em Novembro de

2009.

 73

ANEXO A – INSTALAÇÕES ELÉTRICAS

 O diagrama elétrico a seguir representa as instalações realizadas no

subsistema de alimentação:

F
27

F
29

F
31

F
33

F
28

F
30

F
32

F
34

F
25

F
26

F
1

F
3

F
5

F
7

F
2

F
4

F
6

F
8

F
9

F
11

F
13

F
15

F
10

F
12

F
14

F
16

F
17

F
19

F
21

F
23

F
1

8

F
2

0

F
2

2

F
2

4

12
11
10
09
08
07
06
05
04
03
02
01

24
23
22
21
20
19
18
17
16
15
14
13

24VA O
7

O
6

O
5

O
4

O
3

O
2

O
1

O
0

0VA I7 I6 I5 I4 I3 I2 I1 I0

0VB

24VB24VA

A
1

(+
)

T
11

T
12

T
12

T
22 13 23 33 41

14 24 34 42 A
2

(-
)

T
34 X
1

X
2

T
33

B
0

1

B
03

B
05

B
07

B
02

B
04

B
06

B
08

B
11

B
13

B
15

B
17

B
12

B
1

4

B
1

6

B
1

8

B
2

1

B
23

B
31

B
33

B
22

B
24

B
32

B
34

o
u

tp
u

t
in

p
u

t

+
0
1
2
3
4
5
6
7
-

+
0
1
2
3
4
5
6
7
-

o
u

tp
u

t
in

p
u

t

+
0
1
2
3
4
5
6
7
-

+
0
1
2
3
4
5
6
7
-

48

54

25
26

29 30 31 32
33

34

52

53

5544

41

38

37
36

35

39

43

40

46

47

4849

50

12 – 0VB
11 – 0VB
10 – 24VA
09 – 24VA
08 – O7
07 – O6
06 – O5
05 – O4
04 – O3
03 – O2
02 – O1
01 – O0

0VA – 24
0VA – 23

24VB – 22
24VB – 21

I7 – 20
I6 – 19
I5 – 18
I4 – 17
I3 – 16
I2 – 15
I1 – 14
I0 – 13

7

2

4
5

6

3

1

8

13

14

15

16

17

18

19

20

12

24

11
10

22

48

Vista frontal
do conector

F
o

n
te +

-

50

56

1

2
3

4 5 6

7

8
25

26

27

27

28

28

42

49

49

45

51

 74

ANEXO B – PROGRAMA EM LADDER DO CONTROLADOR

Programa principal OB1

 75

Bloco FC10

Bloco FC20

Bloco FC30

Bloco FC40

 76

Bloco FC50

Bloco FC60

 77

ANEXO C – CÓDIGO DO SOFTWARE DE COORDENAÇÃO

Código do WSAlimentacao.asmx

Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.ComponentModel
Imports System.Web.Script.Services
Imports System.Web
Imports System.Web.Script
Imports System.Web.UI
Imports System.Web.UI.WebControls
Imports System.Web.UI.WebControls.WebParts

' To allow this Web Service to be called from script, using ASP.NET
AJAX, uncomment the following line.
<System.Web.Script.Services.ScriptService()> _
<System.Web.Services.WebService(Namespace:="http://tempuri.org/")> _
<System.Web.Services.WebServiceBinding(ConformsTo:=WsiProfiles.BasicPr
ofile1_1)> _
<ToolboxItem(False)> _
Public Class WSAlimentacao
 Inherits System.Web.Services.WebService

 <WebMethod()> _
 Public Function RegistroCliente(ByVal Nome As String) As
Integer
 Dim codCliente As Integer
 codCliente = lnAlimentacao.RegistroCliente(Nome)
 Return codCliente
 End Function

 <WebMethod()> _
 Public Function SolicPedido(ByVal codCliente As Integer, ByVal
npecas As Integer) As Integer
 Dim codPedido As Integer = 0
 codPedido = lnAlimentacao.SolicPedido(codCliente, npecas)
 If codPedido <> 0 Then
 Application.Contents("codPedido") = codPedido
 Application.Contents("codTeleop") =
lnAlimentacao.RetornaTeleop
 End If
 Return codPedido
 End Function

 <WebMethod()> _
 Public Function RetornaCodPedidoTeleop(ByVal codTeleop As Integer)
As Integer
 Dim codPedido
 If codTeleop = Application.Contents("codTeleop") Then
 codPedido = Application.Contents("codPedido")
 Else
 codPedido = 0
 'TELEOPERADOR TEM QUE SABER QUE SE CODPEDIDO = 0 NÃO TEM O
QUE FAZER
 End If
 Return codPedido
 End Function

 78

 <WebMethod()> _
 Public Function RegistraEstEquip(ByVal estEquip As
Equipamento) As Boolean
 Dim Ok As Boolean
 Ok = lnAlimentacao.RegistraEstEquip(estEquip)
 Return Ok
 End Function

 <WebMethod()> _
 Public Function ConsultaEstEquip() As Object
 Dim Equip As Equipamento
 Equip = lnAlimentacao.ConsultaEstEquip()
 Return Equip
 End Function

 <WebMethod()> _
 Public Function PecaEntregue(ByVal nPecasEntregues As Integer,
ByVal codPedido As Integer) As Boolean
 Dim Ok As Boolean
 Ok = lnAlimentacao.PecaEntregue(nPecasEntregues, codPedido)
 Return Ok
 End Function

 <WebMethod()> _
 Public Function DispAlimentacao() As Boolean
 Dim Ok As Boolean
 Ok = lnAlimentacao.DispAlimentacao()
 Return Ok
 End Function

 <WebMethod()> _
 Public Function ConsultaPedido(ByVal codPedido As Integer) As
Integer
 Dim nPecasEntregues As Integer
 nPecasEntregues = lnAlimentacao.ConsultaPedido(codPedido)
 Return nPecasEntregues
 End Function

 <WebMethod()> _
 Public Function LoginCliente(ByVal codCliente As Integer) As
Boolean
 Dim Ok As Boolean
 Application.Contents("codTeleop") = 0
 Ok = lnAlimentacao.LoginCliente(codCliente)
 If Ok Then
 Application.Contents("codCliente") = codCliente
 End If
 Return Ok
 End Function

 <WebMethod()> _
 Public Function RetornaLoginCliente() As Integer
 Dim codCliente As Integer
 codCliente = Application.Contents("codCliente")
 Return codCliente
 End Function

 79

End Class

Código do WSTeleoperacao.asmx

Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.ComponentModel
Imports System.Web.Script.Services

' To allow this Web Service to be called from script, using ASP.NET
AJAX, uncomment the following line.
<System.Web.Script.Services.ScriptService()> _
<System.Web.Services.WebService(Namespace:="http://tempuri.org/")> _
<System.Web.Services.WebServiceBinding(ConformsTo:=WsiProfiles.BasicPr
ofile1_1)> _
<ToolboxItem(False)> _
Public Class WSTeleoperacao
 Inherits System.Web.Services.WebService

 <WebMethod()> _
 Public Function RegistroTeleop(ByVal Nome As String) As Integer
 Dim codTeleop As Integer
 codTeleop = lnTeleoperador.RegistroTeleop(Nome)
 Return codTeleop
 End Function

 <WebMethod()> _
 Public Function RetornaLoginTeleop() As Integer
 Dim codTeleop As Integer
 codTeleop = Application.Contents("codTeleop")
 Return codTeleop
 End Function

 <WebMethod()> _
 Public Function Autorizacao(ByVal codTeleop As Integer) As Boolean
 Dim Ok As Boolean
 Ok = lnTeleoperador.Autorizacao(codTeleop)
 Application.Contents("codTeleop") = codTeleop
 Return Ok
 End Function

 <WebMethod()> _
 Public Function ModoOperacao(ByVal codTeleop As Integer, ByVal modo
As String) As Boolean
 Dim ok As Boolean
 ok = lnTeleoperador.modoOperacao(codTeleop, modo)
 Return ok
 End Function

 <WebMethod()> _
Public Function InfEstTelecomando(ByVal codTeleop As Integer, ByVal
codPedido As Integer) As String
 Dim atividade As String
 atividade = lnTelecomando.InfEstadoTelecomando(codTeleop,
codPedido)
 Return atividade
 End Function

 80

 <WebMethod()> _
Public Function SolicitaTelecomando(ByVal codPedido As Integer, ByVal
Atividade As String) As Boolean
 Dim Ok As Boolean
 Ok = lnTelecomando.SolicTelecomando(codPedido, Atividade)
 Return Ok
 End Function

 <WebMethod()> _
Public Function AtualizaEstTelecomando(ByVal codPedido As Integer,
ByVal codTeleop As Integer) As Boolean
 Dim Ok As Boolean
 Ok = lnTelecomando.AtualizaEstadoTelecomando(codPedido)
 Return Ok
 End Function

 <WebMethod()> _
Public Sub ParadaEmergencia()
 lnTelecomando.ParadaEmergencia()
 End Sub

 <WebMethod()> _
Public Function HelloWorld() As String
 Return "Hello World"
 End Function
End Class

Código do lnAlimentacao.vb

Imports System.Xml

Public Class lnAlimentacao

 Shared CodigoTeleoperador As Integer = 0
 Shared CodigoPedido As Integer = 0

 Public Shared Function RegistroCliente(ByVal Nome As String) As
Integer
 Dim codCliente As Integer
 Dim bNovoCliente As Boolean
 bNovoCliente = bdAlimentacao.ConsultaCliente(Nome)
 If bNovoCliente = True Then
 bNovoCliente = bdAlimentacao.ResgistraCliente(Nome) 'Não
utilizo este booleano
 End If
 codCliente = bdAlimentacao.RetornaCodCliente(Nome)
 Return codCliente
 End Function

 Public Shared Function LoginCliente(ByVal codCliente As Integer)
As Boolean
 Dim bOk As Boolean
 bOk = bdAlimentacao.ConsultaClientecod(codCliente)
 Return bOk
 End Function

 Public Shared Function DispAlimentacao() As Boolean

 81

 Dim Ok As Boolean
 ' Dim Resp_XML As XmlDocument
 Dim codTeleop As Integer
 Dim Ok_Equip As Boolean

 codTeleop = lnTeleoperador.DispTeleop()
 Ok_Equip = lnSupervisorio.DispEquip()
 If codTeleop = 0 Then
 Ok = False 'Não tem teleoperador disponível
 Else
 If Ok_Equip = True Then
 Ok = True 'Tem equipamento e teleop ok!
 Else
 Ok = False 'Tem teleop mas não tem equipamento
 End If
 End If
 Return Ok
 End Function

 Public Shared Function SolicPedido(ByVal codCliente As Integer,
ByVal npecas As Integer) As Integer
 'Verifica disponibilidade de Teleoperador
 Dim codTeleop As Integer
 Dim codPedido As Integer
 Dim Ok_Equip As Boolean
 Dim Ok As Boolean

 'O correto pensado inicialmente é este, pensando em um
ambiente distribuido, porém, para teste só terá um teleop
 codTeleop = lnTeleoperador.DispTeleop()
 If codTeleop = 0 Then
 codPedido = 0 'o cliente deve entender que codPedido = 0
significa que
 ' solicitação não foi executada com sucesso, neste caso,
pq não tinha teleoperador
 Return codPedido
 End If

 Ok_Equip = lnSupervisorio.DispEquip
 If Ok_Equip = False Then
 'Não tem equipamento mais disponível, portanto codPedido =
0
 codPedido = 0
 Return codPedido
 End If
 codPedido = bdAlimentacao.ConsultaUltimoPedido()
 codPedido = codPedido + 1 'Atualiza o novo valor para o
codPedido
 Ok = bdAlimentacao.RegistroPedido(codCliente, codPedido,
npecas)
 If Ok = False Then
 codPedido = 0 'Não conseguiu fazer o registro do pedido,
então o cliente precisa saber que deu erro de novo
 Return codPedido
 End If
 Ok_Equip = lnSupervisorio.ProducaoPecas(codPedido, npecas)
 If Ok_Equip = False Then
 'Supervisorio não quis fazer o pedido
 codPedido = 0
 Return codPedido

 82

 End If
 Ok = lnTelecomando.RegistraTelecomando(codPedido, codTeleop)
 'Se chegou até aqui, é pq o pedido e o tele-operador já estão
confirmados.
 CodigoTeleoperador = codTeleop
 CodigoPedido = codPedido
 Return codPedido
 End Function

 Public Shared Function RetornaTeleop() As Integer
 Dim codTeleop As Integer
 codTeleop = CodigoTeleoperador
 Return codTeleop
 End Function

 Public Shared Function RegistraEstEquip(ByVal EstEqui As
Equipamento) As Boolean
 Dim Ok As Boolean
 Dim DataHora As DateTime
 DataHora = DateTime.Now
 Ok = bdAlimentacao.RegistraEstEquip(EstEqui, DataHora)
 Return Ok
 End Function

 Public Shared Function ConsultaEstEquip() As Object
 Dim Equip As Equipamento
 Equip = bdAlimentacao.ConsultaEstEquip
 Return Equip
 End Function

 Public Shared Function PecaEntregue(ByVal nPecasEntregues As
Integer, ByVal codPedido As Integer) As Boolean
 Dim Ok As Boolean = True
 Dim nPecasTotais As Integer
 Dim codTeleop As Integer
 codTeleop = bdTelecomando.ConsultaTeleop(codPedido)
 nPecasTotais = bdAlimentacao.ConsultaTotalPecas(codPedido)
 bdAlimentacao.AtualizaPecaEntregue(nPecasEntregues, codPedido)
 If nPecasTotais = nPecasEntregues Then
 'Acabou a execução do Pedido!
 Ok = lnTelecomando.AtualizaEstadoTelecomando(codPedido)
 lnTeleoperador.AtualizaStatusTeleop(codTeleop, "online")
 End If
 Return Ok
 End Function

 Public Shared Function ConsultaPedido(ByVal codPedido As Integer)
As Integer
 Dim nPecasEntregues As Integer
 nPecasEntregues =
bdAlimentacao.ConsultaPecasEntregues(codPedido)
 Return nPecasEntregues
 End Function

 83

End Class

Código do lnTeleoperador.vb

Public Class lnTeleoperador

 Shared CodigoTeleoperador As Integer = 0

 Public Shared Function RegistroTeleop(ByVal Nome As String) As
Integer
 Dim codTeleop As Integer = 0
 Dim RegistroOk As Boolean = False

 'codTeleop = bdTeleoperador.RetornaCodTeleop(Nome)

 'verifica se esse teleoperador já foi inscrito, se não foi,
codTeleop = 0
 'If codTeleop = 0 Then
 'RegistroOk = bdTeleoperador.RegistroTeleop(Nome)
 'If RegistroOk Then 'se o registro foi feito com sucesso,
o codTeleop agora é dif. de zero
 'codTeleop = bdTeleoperador.RetornaCodTeleop(Nome)
 'End If
 'End If
 RegistroOk = bdTeleoperador.RegistroTeleop(Nome)
 If RegistroOk Then
 codTeleop = bdTeleoperador.RetornaCodTeleop(Nome)
 End If
 Return codTeleop
 End Function

 Public Shared Function Autorizacao(ByVal codTeleop As Integer) As
Boolean
 Dim Ok As Boolean
 Dim status As String
 status = "online"
 Ok = bdTeleoperador.AtualizaStatus(codTeleop, status)
 If Ok = True Then
 CodigoTeleoperador = codTeleop
 End If
 Return Ok
 End Function

 Public Shared Function modoOperacao(ByVal codTeleop As Integer,
ByVal modo As String) As Boolean
 Dim Ok As Boolean
 Ok = bdTeleoperador.Modo(codTeleop, modo)
 Return Ok
 End Function

 Public Shared Function DispTeleop() As Integer
 Dim codTeleop As Integer
 'Correto para Ambiente Distribuido, porém para teste TF só vai
utilizar o teleoperador que estiver logado
 'Dim status As String
 'status = "online"
 'codTeleop = bdTeleoperador.DispTeleop(status)
 codTeleop = CodigoTeleoperador
 Return codTeleop

 84

 End Function

 Public Shared Function AtualizaStatusTeleop(ByVal codTeleop As
Integer, ByVal status As String) As Boolean
 Dim Ok As Boolean
 Ok = bdTeleoperador.AtualizaStatus(codTeleop, status)
 Return Ok
 End Function

End Class

Código do lnTelecomando.vb

Public Class lnTelecomando

 Public Shared Function InfEstadoTelecomando(ByVal codTeleop As
Integer, ByVal codPedido As Integer) As String
 Dim telec As Telecomando
 Dim ativ As String
 telec = bdTelecomando.RetornaEstadoTelecomando(codTeleop,
codPedido)
 If telec.Estado = "pendente " Then
 ativ = telec.Atividade
 Else
 ativ = "atividades concluidas"
 End If
 Return ativ

 End Function

 Public Shared Function AtualizaEstadoTelecomando(ByVal codPedido
As Integer) As Boolean
 Dim Ok As Boolean
 Dim estado As String = "concluido"
 Ok = bdTelecomando.AtualizaEstadoTelecomando(codPedido,
estado)
 lnSupervisorio.RespostaTelecomando(True, codPedido) 'true =
pode fazer atividade
 Return Ok
 End Function

 Public Shared Function SolicTelecomando(ByVal codPedido As
Integer, ByVal Atividade As String) As Boolean
 Dim Ok As Boolean
 Dim codTeleop As Integer
 Dim modo As String
 Dim Estado As String
 codTeleop = bdTelecomando.ConsultaTeleop(codPedido)
 modo = bdTeleoperador.VerificaModoOp(codTeleop)
 If modo.TrimEnd = "monit" Then
 'Simplesmente atualiza a atividade (com estado =
"concluido") e já responde ao Supervisório
 Estado = "concluido"
 Ok = bdTelecomando.RegistraAtividade(codPedido, Atividade,
Estado)
 lnSupervisorio.RespostaTelecomando(Ok, codPedido)
 Else

 85

 'Se modo é teleoperacao, atividade será registrada com
estado pendente, para que depois o teleoperador possa autoriza-la ou
não
 Estado = "pendente"
 Ok = bdTelecomando.RegistraAtividade(codPedido, Atividade,
Estado)
 End If
 Return Ok
 End Function

 Public Shared Function RegistraTelecomando(ByVal codPedido As
Integer, ByVal codTeleop As Integer) As Boolean
 Dim Ok As Boolean
 Ok = bdTelecomando.RegistraTelecomando(codTeleop, codPedido)
 Return Ok
 End Function

 Public Shared Sub ParadaEmergencia()
 lnSupervisorio.ParadaEmergencia()
 End Sub

End Class

Código do bdAlimentacao.vb

Imports System.Data
Imports System.Data.SqlClient

Public Class bdAlimentacao

 Public Shared conn As SqlConnection
 Public Shared SQLCmd As New SqlCommand() 'The SQL Command
 Public Shared SQLStr As String

 Public Shared Sub ConectaBD()
 Try
 conn = New SqlConnection("Data
Source=192.168.0.197;Initial Catalog=TF;User ID=tf;Password=samira;")
 conn.Open()
 SQLCmd.Connection = conn
 Catch ex As Exception
 'MsgBox("Erro ao realizar a conexao com Banco de Dados")
 End Try
 End Sub

 Public Shared Sub DesconectaBD()
 conn.Close()
 End Sub

 Public Shared Function ConsultaCliente(ByVal Nome As String) As
Boolean
 Dim Ok As Boolean
 Dim codCliente As Integer
 ConectaBD()
 'http://msdn.microsoft.com/pt-
br/library/system.data.sqlclient.sqlcommand.aspx

 SQLStr = "SELECT codCliente FROM Cliente WHERE Nome ='" & Nome
& "'"

 86

 SQLCmd.CommandText = SQLStr
 codCliente = CType(SQLCmd.ExecuteScalar, Integer)
 If codCliente = 0 Then
 Ok = True 'Cliente ainda não registrado
 Else : Ok = False 'Cliente registrado
 End If
 DesconectaBD()
 Return Ok
 End Function

 Public Shared Function ConsultaClientecod(ByVal cod As Integer) As
Boolean
 Dim Ok As Boolean = False
 Dim Nome As String = Nothing
 ConectaBD()
 'http://msdn.microsoft.com/pt-
br/library/system.data.sqlclient.sqlcommand.aspx

 SQLStr = "SELECT Nome FROM Cliente WHERE codCliente ='" & cod
& "'"
 SQLCmd.CommandText = SQLStr
 Nome = CType(SQLCmd.ExecuteScalar, String)
 If Nome = "" Then
 Ok = False 'Cliente ainda não registrado
 Else : Ok = True 'Cliente registrado
 End If
 DesconectaBD()
 Return Ok
 End Function

 Public Shared Function ResgistraCliente(ByVal Nome As String) As
Boolean
 Dim Ok As Boolean
 ConectaBD()
 SQLStr = "INSERT INTO Cliente (Nome) VALUES ('" & Nome & "')"
 SQLCmd.CommandText = SQLStr
 Try
 SQLCmd.ExecuteNonQuery()
 Ok = True
 Catch
 Ok = False
 End Try
 DesconectaBD()
 Return Ok
 End Function

 Public Shared Function RetornaCodCliente(ByVal Nome As String) As
Integer
 Dim codCliente As Integer
 ConectaBD()
 SQLStr = "SELECT codCliente FROM Cliente WHERE Nome ='" & Nome
& "'"
 SQLCmd.CommandText = SQLStr
 codCliente = CType(SQLCmd.ExecuteScalar, Integer)
 DesconectaBD()
 Return codCliente
 End Function

 Public Shared Function RegistroPedido(ByVal codCliente As Integer,
ByVal codPedido As Integer, ByVal npecas As Integer) As Boolean
 Dim Ok As Boolean

 87

 Try
 ConectaBD()
 SQLStr = "INSERT INTO Pedido (codPedido, npecas,
codCliente) VALUES ('" & codPedido & "','" & npecas & "','" &
codCliente & "')"
 SQLCmd.CommandText = SQLStr
 SQLCmd.ExecuteNonQuery()
 DesconectaBD()
 Ok = True
 Catch ex As Exception
 Ok = False
 End Try
 Return Ok
 End Function

 Public Shared Function RegistraEstEquip(ByVal EstEquip As
Equipamento, ByVal DataHora As DateTime) As Boolean
 Dim Ok As Boolean
 ConectaBD()
 SQLStr = "INSERT INTO Equipamento (DataHora, R000, R001, R002,
R003, R005, R006) VALUES ('" & DataHora & "','" & EstEquip.R000 &
"','" & EstEquip.R001 & "','" & EstEquip.R002 & "','" & EstEquip.R003
& "','" & EstEquip.R005 & "','" & EstEquip.R006 & "')"
 SQLCmd.CommandText = SQLStr
 Try
 SQLCmd.ExecuteNonQuery()
 Ok = True
 Catch ex As Exception
 Ok = False
 End Try
 DesconectaBD()
 Return Ok
 End Function

 Public Shared Function ConsultaEstEquip() As Object
 Dim EstEquip As Equipamento
 Dim reader As SqlDataReader
 Dim dataho As DateTime
 Dim Indice As Integer
 Dim r0 As Integer
 Dim r1 As Integer
 Dim r2 As Integer
 Dim r3 As Integer
 Dim r5 As Integer
 Dim r6 As Integer
 ConectaBD()
 SQLStr = "SELECT MAX(Indice)FROM Equipamento"
 SQLCmd.CommandText = SQLStr
 Indice = CType(SQLCmd.ExecuteScalar, Integer)
 SQLStr = "SELECT DataHora, R000, R001, R002, R003, R005, R006
FROM Equipamento WHERE Indice =" & Indice
 SQLCmd.CommandText = SQLStr
 reader = SQLCmd.ExecuteReader
 While reader.Read()
 dataho = reader.GetDateTime(0)
 r0 = CType(reader.GetValue(1), Integer)
 r1 = CType(reader.GetValue(2), Integer)
 r2 = CType(reader.GetValue(3), Integer)
 r3 = CType(reader.GetValue(4), Integer)
 r5 = CType(reader.GetValue(5), Integer)
 r6 = CType(reader.GetValue(6), Integer)

 88

 End While
 EstEquip.DataHora = dataho
 EstEquip.R000 = r0
 EstEquip.R001 = r1
 EstEquip.R002 = r2
 EstEquip.R003 = r3
 EstEquip.R005 = r5
 EstEquip.R006 = r6
 DesconectaBD()
 Return EstEquip
 End Function

 Public Shared Function ConsultaTotalPecas(ByVal codPedido As
Integer) As Integer
 Dim nPecas As Integer
 ConectaBD()
 SQLStr = "SELECT npecas FROM Pedido WHERE codPedido ='" &
codPedido & "'"
 SQLCmd.CommandText = SQLStr
 nPecas = CType(SQLCmd.ExecuteScalar, Integer)
 DesconectaBD()
 Return nPecas
 End Function

 Public Shared Function ConsultaPecasEntregues(ByVal codPedido As
Integer) As Integer
 Dim nPecasEntregues As Integer
 ConectaBD()
 SQLStr = "SELECT npecasentregues FROM Pedido WHERE
codPedido='" & codPedido & "'"
 SQLCmd.CommandText = SQLStr
 nPecasEntregues = CType(SQLCmd.ExecuteScalar, Integer)
 DesconectaBD()
 Return nPecasEntregues
 End Function

 Public Shared Sub AtualizaPecaEntregue(ByVal nPecasEntregues As
Integer, ByVal codPedido As Integer)
 ConectaBD()
 SQLStr = "UPDATE Pedido SET npecasentregues =" &
nPecasEntregues & " WHERE codPedido=" & codPedido
 SQLCmd.CommandText = SQLStr
 SQLCmd.ExecuteNonQuery()
 DesconectaBD()
 End Sub

 Public Shared Function ConsultaUltimoPedido() As Integer
 Dim codPedido As Integer
 ConectaBD()
 SQLStr = "SELECT MAX(codPedido) FROM Pedido"
 SQLCmd.CommandText = SQLStr
 codPedido = CType(SQLCmd.ExecuteScalar, Integer)
 DesconectaBD()
 Return codPedido
 End Function

End Class

Código do bdTeleoperador.vb

 89

Imports System.Data
Imports System.Data.SqlClient

Public Class bdTelecomando

 Public Shared conn As SqlConnection
 Public Shared SQLCmd As New SqlCommand() 'The SQL Command
 Public Shared SQLStr As String

 Public Shared Sub ConectaBD()
 Try
 conn = New SqlConnection("Data
Source=192.168.0.197;Initial Catalog=TF;User ID=tf;Password=samira;")
 conn.Open()
 SQLCmd.Connection = conn
 Catch ex As Exception
 ' MsgBox("Erro ao realizar a conexao com Banco de Dados")
 End Try
 End Sub

 Public Shared Sub DesconectaBD()
 conn.Close()
 End Sub

 Public Shared Function RetornaEstadoTelecomando(ByVal codTeleop As
Integer, ByVal codPedido As Integer) As Object
 'http://msdn.microsoft.com/pt-br/library/9kcbe65k.aspx
 Dim telec As Telecomando
 Dim ativ As String = ""
 Dim est As String = ""
 Dim datahora As DateTime
 Dim reader As SqlDataReader

 ConectaBD()
 SQLStr = "SELECT Atividade, Estado FROM Telecomando WHERE
codPedido ='" & codPedido & "'"
 SQLCmd.CommandText = SQLStr
 reader = SQLCmd.ExecuteReader
 While reader.Read()
 ativ = reader.GetString(0)
 est = reader.GetString(1)
 'datahora = reader.GetDateTime(2)
 End While
 'telec = New Telecomando(codTeleop, codPedido, ativ, est,
datahora)
 telec.Atividade = ativ
 telec.codPedido = codPedido
 telec.codTeleop = codTeleop
 telec.DataHora = datahora
 telec.Estado = est
 DesconectaBD()
 Return telec
 End Function

 Public Shared Function RegistraTelecomando(ByVal codTeleop As
Integer, ByVal codPedido As Integer) As Boolean
 Dim Ok As Boolean
 ConectaBD()
 SQLStr = "INSERT INTO Telecomando (codTeleop, codPedido)
VALUES ('" & codTeleop & "','" & codPedido & "')"

 90

 SQLCmd.CommandText = SQLStr
 Try
 SQLCmd.ExecuteNonQuery()
 Ok = True
 Catch
 Ok = False
 End Try
 DesconectaBD()
 Return Ok
 End Function

 Public Shared Function RegistraAtividade(ByVal codPedido As
Integer, ByVal Atividade As String, ByVal Estado As String) As Boolean
 Dim Ok As Boolean
 ConectaBD()
 SQLStr = "UPDATE Telecomando SET Atividade='" & Atividade &
"', Estado='" & Estado & "' WHERE codPedido ='" & codPedido & "'"
 SQLCmd.CommandText = SQLStr
 Try
 SQLCmd.ExecuteNonQuery()
 Ok = True
 Catch
 Ok = False
 End Try
 DesconectaBD()
 Return Ok
 End Function

 Public Shared Function AtualizaEstadoTelecomando(ByVal codPedido
As Integer, ByVal Estado As String) As Boolean
 Dim Ok As Boolean

 ConectaBD()
 SQLStr = "UPDATE Telecomando SET Estado ='" & Estado & "'
WHERE codPedido ='" & codPedido & "'"
 SQLCmd.CommandText = SQLStr
 Try
 SQLCmd.ExecuteNonQuery()
 Ok = True
 Catch
 Ok = False
 End Try
 DesconectaBD()
 Return Ok
 End Function

 Public Shared Function ConsultaTeleop(ByVal codPedido As Integer)
As Integer
 Dim codTeleop As Integer
 ConectaBD()
 SQLStr = "SELECT codTeleop FROM Telecomando WHERE codPedido
='" & codPedido & "'"
 SQLCmd.CommandText = SQLStr
 codTeleop = CType(SQLCmd.ExecuteScalar, Integer)
 DesconectaBD()
 Return codTeleop
 End Function

 91

End Class

Código do bdTelecomando.vb

Imports System.Data
Imports System.Data.SqlClient

Public Class bdTeleoperador

 Public Shared conn As SqlConnection
 Public Shared SQLCmd As New SqlCommand() 'The SQL Command
 Public Shared SQLStr As String

 Public Shared Sub ConectaBD()
 Try
 conn = New SqlConnection("Data
Source=192.168.0.197;Initial Catalog=TF;User ID=tf;Password=samira;")
 conn.Open()
 SQLCmd.Connection = conn
 Catch ex As Exception
 'MsgBox("Erro ao realizar a conexao com Banco de Dados")
 End Try
 End Sub

 Public Shared Sub DesconectaBD()
 conn.Close()
 End Sub

 Public Shared Function RegistroTeleop(ByVal Nome As String) As
Boolean
 Dim Ok As Boolean
 ConectaBD()
 SQLStr = "INSERT INTO Teleoperador (Nome) VALUES ('" & Nome &
"')"
 SQLCmd.CommandText = SQLStr
 Try
 SQLCmd.ExecuteNonQuery()
 Ok = True
 Catch
 Ok = False
 End Try
 DesconectaBD()
 Return Ok
 End Function

 Public Shared Function RetornaCodTeleop(ByVal Nome As String) As
Integer
 Dim codTeleop As Integer
 ConectaBD()
 SQLStr = "SELECT codTeleop FROM Teleoperador WHERE Nome='" &
Nome & "'"
 SQLCmd.CommandText = SQLStr
 codTeleop = CType(SQLCmd.ExecuteScalar, Integer)
 DesconectaBD()
 Return codTeleop
 End Function

 Public Shared Function AtualizaStatus(ByVal codTeleop As Integer,
ByVal status As String) As Boolean

 92

 Dim Ok As Boolean
 ConectaBD()
 SQLStr = "UPDATE Teleoperador SET status='" & status & "'
WHERE codTeleop='" & codTeleop & "'"
 SQLCmd.CommandText = SQLStr
 Try
 SQLCmd.ExecuteNonQuery()
 Ok = True
 DesconectaBD()
 Catch
 Ok = False
 End Try
 DesconectaBD()
 Return Ok
 End Function

 Public Shared Function Modo(ByVal codTeleop As Integer, ByVal
modoTeleop As String) As Boolean
 Dim Ok As Boolean = True
 ConectaBD()
 SQLStr = "UPDATE Teleoperador SET modoop='" & modoTeleop & "'
WHERE codTeleop='" & codTeleop & "'"
 SQLCmd.CommandText = SQLStr
 Try
 SQLCmd.ExecuteNonQuery()
 Ok = True
 Catch
 Ok = False
 End Try
 DesconectaBD()
 Return Ok
 End Function

 Public Shared Function DispTeleop(ByVal status As String) As
Integer
 Dim codTeleop As Integer
 ConectaBD()
 SQLStr = "SELECT codTeleop FROM Teleoperador WHERE status='" &
status & "'"
 SQLCmd.CommandText = SQLStr
 codTeleop = CType(SQLCmd.ExecuteScalar(), Integer)
 DesconectaBD()
 Return codTeleop
 End Function

 Public Shared Function VerificaModoOp(ByVal codTeleop As Integer)
As String
 Dim modoop As String
 ConectaBD()
 SQLStr = "SELECT modoop FROM Teleoperador WHERE codTeleop='" &
codTeleop & "'"
 SQLCmd.CommandText = SQLStr
 modoop = CType(SQLCmd.ExecuteScalar(), String)
 DesconectaBD()
 Return modoop
 End Function

 93

End Class

Código do Equipamento.vb

Public Structure Equipamento
 Dim R000 As Integer
 Dim R001 As Integer
 Dim R002 As Integer
 Dim R003 As Integer
 Dim R005 As Integer
 Dim R006 As Integer
 Dim DataHora As DateTime
End Structure

Código do Telecomando.vb

Public Structure Telecomando
 Dim codTeleop As Integer
 Dim codPedido As Integer
 Dim Atividade As String
 Dim Estado As String
 Dim DataHora As DateTime
End Structure

 94

ANEXO D – CÓDIGO DO SUPERVISÓRIO

Código do Sup.asmx

Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.ComponentModel
Imports System.Web.Script.Services
Imports System.Web
Imports System.Web.Script
Imports System.Web.UI
Imports System.Web.UI.WebControls
Imports System.Web.UI.WebControls.WebParts
Imports System.Xml
Imports opcconn

' To allow this Web Service to be called from script, using ASP.NET
AJAX, uncomment the following line.
<System.Web.Script.Services.ScriptService()> _
<System.Web.Services.WebService(Namespace:="http://tempuri.org/")> _
<System.Web.Services.WebServiceBinding(ConformsTo:=WsiProfiles.BasicPr
ofile1_1)> _
<ToolboxItem(False)> _
Public Class Sup
 Inherits System.Web.Services.WebService

 <WebMethod()> _
Public Function ConectaOPC() As Boolean
 Dim ok As Boolean
 ok = lnSupervisorio.ConectaOPC()
 Return ok
 End Function

 <WebMethod()> _
Public Sub CarregaXml()
 lnSupervisorio.CarregaXml()
 End Sub

 <WebMethod()> _
 Public Function DispEquip() As Boolean
 Dim Ok_Equip As Boolean = True
 lnSupervisorio.DispEquip()
 Return Ok_Equip
 End Function

 <WebMethod()> _
Public Function ProducaoPecas(ByVal codPed As Integer, ByVal npecas As
Integer) As Boolean
 Dim Ok As Boolean = True
 lnSupervisorio.ProducaoPecas(codPed, npecas)
 Return Ok
 End Function

 <WebMethod()> _
Public Sub RespostaTelecomando(ByVal PodeFazer As Boolean, ByVal
codPed As Integer)
 'PodeFazer = true - pode executar atividade
 'PodeFazer = false - não pode executar atividade
 lnSupervisorio.RespostaTelecomando(PodeFazer, codPed)
 End Sub

 95

 <WebMethod()> _
Public Sub ParadaEmergencia()
 lnSupervisorio.ParadaEmergencia()
 End Sub

 <WebMethod()> _
Public Sub Acorda()
 lnSupervisorio.Acorda()
 End Sub

 'FAZER MÉTODOS PARA TESTES BÁSICOS

 <WebMethod()> _
 Public Sub Setup()
 lnSupervisorio.Setup()
 End Sub

 <WebMethod()> _
 Private Sub Execucao()
 lnSupervisorio.Execucao()
 End Sub

 'Métodos utilizados apenas para testes

 <WebMethod()> _
Public Sub EstendeCilindro()
 lnSupervisorio.EstendeCilindro()
 End Sub

 <WebMethod()> _
Public Sub BracoAlimentacao()
 lnSupervisorio.BracoAlimentacao()
 End Sub

 <WebMethod()> _
 Public Sub LigaVentosa()
 lnSupervisorio.LigaVentosa()
 End Sub

 <WebMethod()> _
Public Sub BracoInspecao()
 lnSupervisorio.BracoInspecao()
 End Sub

 <WebMethod()> _
Public Sub DesligaVentosa()
 lnSupervisorio.DesligaVentosa()
 End Sub

 <WebMethod()> _
Public Sub RecuaCilindro()
 lnSupervisorio.RecuaCilindro()
 End Sub

 <WebMethod()> _
Public Function lerPorta(ByVal porta As String) As String
 Dim estado_port As String
 estado_port = lnSupervisorio.lerPorta(porta)

 96

 Return estado_port
 End Function

End Class

Código do lnSupervisório.vb

Imports System.ComponentModel
Imports System.Xml
Imports opcconn

Public Class lnSupervisorio

 Shared xmlDoc As XmlDocument = New XmlDocument
 Shared opc As opcClient
 Shared group As opcClientGroup
 Shared codPedido As Integer = 0
 Shared bEmProducao As Boolean = False
 Shared nTotalPecas As Integer = 0
 Shared nPecasEntregues As Integer = 0
 Shared Atividade As String = ""

 Public Shared Function ConectaOPC() As Boolean
 Dim Ok As Boolean = True
 Dim xmlItem As XmlNode
 Dim xmlServer As XmlNode
 Dim xmlGroup As XmlNode
 xmlServer = xmlDoc.GetElementsByTagName("server").ItemOf(0)
 'Cria um novo objeto opcclient
 opc = New
opcClient(xmlServer.Attributes.GetNamedItem("name").Value)
 If opc.ErrorMessage.Length > 0 Then
 'Se mensagem de erro tem tamanho maior que zero é porque
ocorreu erro
 opc.Dispose()
 'Não foi possível criar o objeto OPC
 Ok = False
 Else
 'cria grupo
 For Each xmlGroup In xmlServer.SelectNodes("group")

opc.AddGroup(xmlGroup.Attributes.GetNamedItem("name").Value)
 If opc.ErrorMessage.Length = 0 Then
 'cria item para cada grupo
 For Each xmlItem In xmlGroup.SelectNodes("item")

opc.GetGroupByPosition(0).AddItem(xmlItem.Attributes.GetNamedItem("id"
).Value, xmlItem.Attributes.GetNamedItem("memory").Value)
 If
opc.GetGroupByPosition(0).ErrorMessage.Length > 0 Then
 'não foi possível criar ao menos um grupo
 Ok = False
 End If
 Next
 Else
 'não foi possível criar grupo

 97

 Ok = False
 End If
 Next
 '*************
 'MsgBox("Conexão OPC Montada")
 End If
 'Só após a conexão OPC ter sido efetuada que são inicializadas
as variaveis
 'Inicializa as variaveis
 Atividade = ""
 bEmProducao = False
 codPedido = 0
 nTotalPecas = 0
 nPecasEntregues = 0
 Return Ok
 End Function

 Public Shared Sub CarregaXml()
 ' MsgBox("Carregando XML...")

xmlDoc.Load("http://192.168.0.197/alimentacao/xml/opcconfig.xml")
 ' MsgBox("Xml Carregado!")

 End Sub

 Public Shared Function DispEquip() As Boolean
 Dim Ok_Equip As Boolean = True

 If bEmProducao = True Then
 Ok_Equip = False
 Else
 If lerPorta("R006") = "1" Then
 'Não tem peça no Buffer
 Ok_Equip = False
 Else
 'Situação em que tem peças no buffer, e não está em
produçao
 'Refaz o setup novamente (coloca sistema no estado
inicial)
 Setup()
 End If
 End If

 Return Ok_Equip
 End Function

 Public Shared Function ProducaoPecas(ByVal codPed As Integer,
ByVal npecas As Integer) As Boolean
 Dim Ok As Boolean = False

 If bEmProducao = False Then
 bEmProducao = True
 codPedido = codPed
 nTotalPecas = npecas
 nPecasEntregues = 0
 Setup()
 Ok = True
 Else
 Ok = False
 End If

 98

 Return Ok
 End Function

 Public Shared Sub RespostaTelecomando(ByVal PodeFazer As Boolean,
ByVal codPed As Integer)
 'PodeFazer = true - pode executar atividade
 'PodeFazer = false - não pode executar atividade

 If codPedido = codPed Then
 'Telecomando Correto
 If PodeFazer = True Then
 'Se telecomando está correto e pode executar a
atividade
 Execucao()
 End If
 End If

 End Sub

 Public Shared Sub ParadaEmergencia()

 group = opc.GetGroupByPosition(0)
 ' Desativa todos os acionamentos
 ' Verificar se está correto
 group.GetItemById("W004").Write("0")
 group.GetItemById("W005").Write("0")
 group.GetItemById("W000").Write("0")
 group.GetItemById("W001").Write("0")
 group.GetItemById("W002").Write("0")
 group.GetItemById("W003").Write("0")

 End Sub

 Public Shared Sub Acorda()
 'Este é o Main!! que será chamado de tempos em tempos pela
tela
 Dim ok As Boolean

 If codPedido <> 0 Then
 'Isto é, tem pedido
 If nPecasEntregues = nTotalPecas Then
 Setup()
 codPedido = 0
 nTotalPecas = 0
 nPecasEntregues = 0
 bEmProducao = False
 'Atividade = 0
 Atividade = "braco_inspecao_0"
 Else
 'Ainda precisa executar pedido
 ok = lnTelecomando.SolicTelecomando(codPedido,
Atividade)
 End If
 Else
 'Se as variaveis globais não funcionarem, eu uso o
Application! e transformo todas em applications!

 Setup()
 codPedido = 0
 nTotalPecas = 0
 nPecasEntregues = 0

 99

 bEmProducao = False
 'Atividade = 0
 Atividade = "braco_inspecao_0"

 End If

 End Sub

 'FAZER MÉTODOS PARA TESTES BÁSICOS

 Public Shared Function lerPorta(ByVal var As String) As String
 Dim Variavel As String
 group = opc.GetGroupByPosition(0)
 Variavel = group.GetItemById(var).Read()
 Return Variavel
 End Function

 Public Shared Sub Setup()
 'If Application.Contents("ConexaoOPC") = Nothing Then
 ' MsgBox("Conexão com o OPC Server não encontrada!")
 'Else
 group = opc.GetGroupByPosition(0)
 ' Desliga ventosa
 group.GetItemById("W004").Write("0")
 group.GetItemById("W005").Write("1")
 'Recua cilindro do buffer
 group.GetItemById("W000").Write("0")
 group.GetItemById("W001").Write("1")
 'Gira braço para ficar no sub-sistema de alimentacao
 group.GetItemById("W002").Write("0")
 group.GetItemById("W003").Write("1")
 'End If
 End Sub

 Public Shared Sub Execucao()
 'variável utilizada para que a rotina de execução seja
finalizada antes que ocorra
 'a atualizaçao das variaveis pelo método Acorda()
 Dim npecasentregadas As Integer
 group = opc.GetGroupByPosition(0)
 'Select Case Atividade
 Select Case Atividade

 Case "braco_inspecao_0"
 'Leva o braço para posição de inspeção
 group.GetItemById("W002").Write("1")
 group.GetItemById("W003").Write("0")
 System.Threading.Thread.Sleep(5000)
 Atividade = "estende_cilindro"

 Case "estende_cilindro"
 group.GetItemById("W000").Write("1")
 group.GetItemById("W001").Write("0")
 System.Threading.Thread.Sleep(2000)
 'Atualiza qual é a próxima atividade que deve ser
feita
 'Atividade = "braco_alimentacao"
 Atividade = "braco_alimentacao"

 Case "braco_alimentacao"
 group.GetItemById("W002").Write("0")

 100

 group.GetItemById("W003").Write("1")
 System.Threading.Thread.Sleep(2000)
 'Atualiza qual é a próxima atividade que deve ser
feita
 'Atividade = "liga_ventosa"
 Atividade = "liga_ventosa"

 Case "liga_ventosa"
 group.GetItemById("W004").Write("1")
 group.GetItemById("W005").Write("0")
 System.Threading.Thread.Sleep(2000)
 If lerPorta("R005") = 0 Then
 'Não pegou a peça
 'MsgBox("Peça não foi presa!")
 End If
 System.Threading.Thread.Sleep(2000)
 'Atualiza qual é a próxima atividade que deve ser
feita
 'Atividade = "recua_cilindro"
 Atividade = "recua_cilindro"

 Case "recua_cilindro"
 group.GetItemById("W000").Write("0")
 group.GetItemById("W001").Write("1")
 System.Threading.Thread.Sleep(2000)
 'Atualiza qual é a próxima atividade que deve ser
feita
 'Atividade = "braco_inspecao"
 Atividade = "braco_inspecao"

 Case "braco_inspecao"
 'Leva o braço para posição de inspeção
 group.GetItemById("W002").Write("1")
 group.GetItemById("W003").Write("0")
 System.Threading.Thread.Sleep(5000)
 'atualiza o numero de peças entregues
 npecasentregadas = nPecasEntregues + 1
 ' Desliga ventosa
 group.GetItemById("W004").Write("0")
 group.GetItemById("W005").Write("1")
 'Seta condições iniciais do subsistema de alimentacao
 Setup()
 'Atualiza qual é a próxima atividade que deve ser
feita
 'Atividade = "estende_cilindro"
 If npecasentregadas = nTotalPecas Then
 Atividade = "Pedido Finalizado!"
 Else
 Atividade = "braco_inspecao_0"
 nPecasEntregues = npecasentregadas
 End If
 'Atualiza quantas peças foram entregues no Banco de
Dados
 lnAlimentacao.PecaEntregue(npecasentregadas,
codPedido)
 End Select
 'End If
 End Sub

 'Métodos utilizados apenas para testes

 101

 Public Shared Sub EstendeCilindro()
 group = opc.GetGroupByPosition(0)
 group.GetItemById("W000").Write("1")
 group.GetItemById("W001").Write("0")
 System.Threading.Thread.Sleep(1000)
 End Sub

 Public Shared Sub BracoAlimentacao()
 group = opc.GetGroupByPosition(0)
 group.GetItemById("W002").Write("0")
 group.GetItemById("W003").Write("1")
 System.Threading.Thread.Sleep(1000)
 End Sub

 Public Shared Sub LigaVentosa()
 group = opc.GetGroupByPosition(0)
 group.GetItemById("W004").Write("1")
 group.GetItemById("W005").Write("0")
 System.Threading.Thread.Sleep(1000)

 End Sub

 Public Shared Sub BracoInspecao()
 group = opc.GetGroupByPosition(0)
 group.GetItemById("W002").Write("1")
 group.GetItemById("W003").Write("0")
 System.Threading.Thread.Sleep(1000)
 End Sub

 Public Shared Sub DesligaVentosa()
 group = opc.GetGroupByPosition(0)
 group.GetItemById("W004").Write("0")
 group.GetItemById("W005").Write("1")
 System.Threading.Thread.Sleep(1000)
 End Sub

 Public Shared Sub RecuaCilindro()

 group = opc.GetGroupByPosition(0)
 group.GetItemById("W000").Write("0")
 group.GetItemById("W001").Write("1")
 System.Threading.Thread.Sleep(1000)
 End Sub

End Class

 102

ANEXO E – PÁGINAS WEB DE ACESSO

Código da página de acesso principal (Default.aspx)

<%@ Page Language="VB" AutoEventWireup="false"
CodeFile="Default.aspx.vb" Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">
<meta content="pt-br" http-equiv="Content-Language" />
<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />
<title>Subsistema de Alimentação</title>

<style type="text/css">
h1 {
 font-family: Calibri;
 font-size: x-large;
 color: #0000FF;
 font-variant: normal;
 text-transform: none;
}
textarea {
 font-family: Calibri;
 font-size: medium;
}
.texto {
 font-family: calibri;
 font-size: medium;
}
.style1 {
 text-align: center;
}
.div {
 margin-right: auto;
 margin-left: auto;
}
.style2 {
 border-width: 0px;
}
</style>
<meta content="monitoração, teleoperação, sistema distribuído e
colaborativo" name="keywords" />
<meta content="Acesso ao software de Coordenação do subsistema de
alimentação" name="description" />
</head>

<body style="margin-left: 0; margin-top: 0; background-color:
#FFFFFF">

<div id="titulo" style="position: absolute; width: 800px; height:
50px; z-index: 3">
 <img alt="titulo" class="div" height="50"
src="images/titulo.png" width="800" /></div>
<div id="cliente" style="position: absolute; width: 400px; height:
51px; z-index: 1; left: 0px; top: 160px">

 103

 <img alt="cliente" class="style2" height="51"
src="images/Cliente.png" width="400" /></div>
<div id="image" style="position: absolute; width: 513px; height:
100px; z-index: 2; left: 0px; top: 55px">
 <img alt="PMRLSA" class="div" height="105"
src="images/CabecalhoPmrLsa.png" width="800" /></div>
<div id="texto" class="div" style="position: absolute; width: 440px;
height: 273px; z-index: 4; left: 210px; top: 259px">
 <h1 class="style1">Subsistema de Alimentação</h1>

 Este subsistema é responsável pelo
fornecimento de
 peças.

 Selecione "Cliente" se deseja
solicitar peças, ou
 acompanhar seu pedido.

 Selecione "Teleoperador" para operar
o subsistema.
</div>
<div id="teleop" style="position: absolute; width: 401px; height:
51px; z-index: 5; left: 400px; top: 160px">

 <img alt="teleop" class="style2" height="51"
src="images/Teleop.png" width="401" /></div>

</body>

</html>

Código da página de login do cliente (cliente.aspx)

<%@ Page Language="vb" AutoEventWireup="true"
CodeBehind="cliente.aspx.vb" Inherits="Coordenador.cliente" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">
<title>Cliente</title>

<script language="javascript" type="text/javascript" src="cliente.js"
>
</script>

<style type="text/css">
.div {
 margin-right: auto;
 margin-left: auto;
}
.centro_img {
 text-align: center;
 border-style: solid;
 border-width: thin;
}

 104

.centralimg {
 margin-top: 20px;
}
.botao {
 font-family: Calibri;
 font-style: normal;
 font-weight: bold;
}
</style>

</head>

<body>

 <div>
 <form id="form1" runat="server" style="background-repeat:no-
repeat; width:900px; height:700px;" >
 <asp:ScriptManager ID="ScriptManager1" runat="server" >
 <Scripts>
 <asp:ScriptReference Path="cliente.js" />
 </Scripts>
 <Services>
 <asp:ServiceReference Path="WSAlimentacao.asmx"
InlineScript="false" />
 </Services>
 </asp:ScriptManager>

 <div id="titulo" style="position: absolute; width: 800px;
height: 50px; z-index: 3; left: 0">
 <img alt="titulo" class="div" height="50"
src="images/titulo.png" width="800" /></div>

 <div id="image" style="position: absolute; width: 513px;
height: 100px; z-index: 1; left: 0px; top: 69px">
 <img alt="PMRLSA" class="div" height="105"
src="images/CabecalhoPmrLsa.png" width="800" /></div>

 <div id="layer1" style="position: absolute; width: 822px;
height: 68px; z-index: 4; left: 0; top: 172px">
 <img alt="tit_cliente" height="68"
src="images/tit_cliente.png" width="822" /></div>

 <div id="cadastro" class="centro_img" style="position:
absolute; width: 400px; height: 250px; z-index: 5; left: 0px; top:
245px">
 <label id="Label1"></label>
 <img alt="cadastro" class="centralimg" height="67"
src="images/cadastro.png" width="217" />

 Nome

 <input class="centralimg" id="txtNome"
name="txtNome" style="width: 216px"
 type="text" />

 <input class="botao" name="btnCadastro"
type="button" value="cadastro"
 onclick="return cadastro()" id="btnCadastro"/>

 105

 cod Cliente =
 <input class="centralimg" name="txtCodigo"
style="width: 150px"
 type="text" id="txtCodigo" /></div>

 <div id="login" class="centro_img" style="position: absolute;
width: 400px; height: 250px; z-index: 6; left: 405px; top: 245px">
 <img alt="login" class="centralimg" height="67"
src="images/login.png" width="217" />

 Código Cliente:

 <input class="centralimg" name="txtCodCliente"
style="width: 150px"
 type="text" id="txtCodCliente" />

 <input class="botao" name="btnLogin" type="button"
value="login"
 id="btnLogin" onclick="return login()" />
 </div>
 </form>
</div>
</body>

</html>

Código do javascript utilizado para página de login do cliente (cliente.js)

function cadastro() {
 var wsa = new Coordenador.WSAlimentacao();
 var nome
 nome = document.getElementById("txtNome").value
 window.alert("vai tentar conectar o webservice");
 wsa.RegistroCliente(nome, cadastroCliente);
}

function login() {
 var wsa = new Coordenador.WSAlimentacao();
 var codCliente
 codCliente = document.getElementById("txtCodCliente").value
 window.alert("Verificando...");
 wsa.LoginCliente(codCliente, loginCliente);
}

function cadastroCliente(codCliente) {
 document.getElementById("txtCodigo").value = codCliente;
}

function loginCliente(Ok) {
 if (Ok == true) {
 window.alert("Bem-vindo!");
 window.open("opCliente.aspx", "", "", "");
 }
 if (Ok == false) {

 106

 window.alert("Código inválido! Por favor, tente novamente ou
realize cadastro.");
 }

}

Código da página de login do teleoperador (teleop.aspx)

<%@ Page Language="vb" AutoEventWireup="true"
CodeBehind="teleop.aspx.vb" Inherits="Coordenador.teleop" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat = "server">
<meta content="pt-br" http-equiv="Content-Language" />
<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />
<title>Teleoperador</title>
<style type="text/css">
.div {
 margin-right: auto;
 margin-left: auto;
}
.centro_img {
 text-align: center;
 border-style: solid;
 border-width: thin;
}
.centralimg {
 margin-top: 20px;
}
.style1 {
 margin-top: 0px;
}
.botao {
 font-family: Calibri;
 font-style: normal;
 font-weight: bold;
}
</style>
<meta content="Página destinada ao teleoperador. Monitoração e
Operação do Sistema produtivo" name="description" />
</head>

<body>

<form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" >
 <Scripts>
 <asp:ScriptReference Path="teleop.js" />
 </Scripts>
 <Services>
 <asp:ServiceReference
Path="WSTeleoperacao.asmx" InlineScript="false" />
 </Services>
 </asp:ScriptManager>

 <div id="titulo" style="position: absolute; width: 800px;
height: 50px; z-index: 3; left: 0">

 107

 <img alt="titulo" class="div" height="50"
src="images/titulo.png" width="800" /></div>

 <div id="image" style="position: absolute; width: 513px;
height: 100px; z-index: 1; left: 0px; top: 69px">
 <img alt="PMRLSA" class="div" height="105"
src="images/CabecalhoPmrLsa.png" width="800" /></div>

 <div id="layer1" style="position: absolute; width: 822px;
height: 68px; z-index: 4; left: 0px; top: 173px">
 <img alt="tit_teleop" height="68"
src="images/tit_teleop.png" width="822" /></div>

 <div id="cadastro" class="centro_img" style="position:
absolute; width: 400px; height: 250px; z-index: 5; left: 0px; top:
245px">
 <img alt="cadastro" class="centralimg" height="67"
src="images/cadastro.png" width="217" />

 Nome

 <input class="centralimg" id="txtNomeTeleop"
name="txtNomeTeleop" style="width: 216px" type="text" /><span
class="centralimg">

 <input class="botao" name="btnCadastro" type="button"
value="cadastro"
 onclick="return cadastro_Teleop()" id="btnCadastro"/>

 codTeleop =

 <input class="centralimg" name="txtCodigo"
style="width: 150px" type="text" id="txtCodigo" />

 </div>
 <div id="login" class="centro_img" style="position: absolute;
width: 400px; height: 250px; z-index: 6; left: 405px; top: 245px">
 <img alt="login" class="centralimg" height="67"
src="images/login.png" width="217" />

 Código Teleop:

 <input class="centralimg" id="txtCodTeleop"
name="txtCodTeleop"
 style="width: 129px" type="text" />

 <input class="botao" name="btnLogin" type="button"
value="login"
 id="btnLogin" onclick="return login_Teleop()" />
 </div>
</form>
</body>

</html>

 108

Código do javascript utilizado para página de login do teleoperador

(teleop.js)

function cadastro_Teleop() {
 var wsa = new Coordenador.WSTeleoperacao();
 var Nome
 Nome = document.getElementById("txtNomeTeleop").value
 wsa.RegistroTeleop(Nome, cadastroTeleop);
}

function login_Teleop() {
 var wsa = new Coordenador.WSTeleoperacao();
 var codTeleop
 codTeleop = document.getElementById("txtCodTeleop").value
 window.alert("Verificando...");
 wsa.Autorizacao(codTeleop, loginTeleop);
}

function cadastroTeleop(codTeleop) {
 document.getElementById("txtCodigo").value = codTeleop;
}

function loginTeleop(Ok) {
 if (Ok == true) {
 window.alert("Bem-vindo!");
 window.open("opTeleop.aspx", "", "", "");
 }
 if (Ok == false) {
 window.alert("Código inválido! Por favor, tente novamente ou
realize cadastro.");
 }

}

Código da página de operações do cliente (opcliente.aspx)

<%@ Page Language="vb" AutoEventWireup="false"
CodeBehind="opCliente.aspx.vb" Inherits="Coordenador.opCliente" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />
<title>opCliente</title>
<style type="text/css">
 .div {
 margin-right: auto;
 margin-left: auto;
 }
 .centro_img {
 text-align: center;

 109

 border-style: solid;
 border-width: thin;
 }
 .centralimg {
 margin-top: 20px;
 }
 .botao {
 font-family: Calibri;
 font-style: normal;
 font-weight: bold;
 top: 20;
 }
 h1 {
 font-family: calibri;
 }
 .h1 {
 font-family: calibri;
 font-size: medium;
 font-weight: bold;
 text-align: center;
 }
 h1 {
 font-family: calibri;
 font-size: medium;
 font-weight: bold;
 text-align: center;
 }
 .emerg {
 border-style: solid;
 border-color: #FF0000;
 font-family: calibri;
 }
 .emerg {
 font-family: calibri;
 font-size: large;
 font-weight: bold;
 font-variant: small-caps;
 text-transform: none;
 color: #FF0000;
 border-style: solid;
 border-color: #FF0000;
 text-align: center;
 }
 h2 {
 font-family: calibri;
 font-size: small;
 font-weight: bold;
 text-align: left;
 }
 h2 {
 font-family: calibri;
 font-size: small;
 font-weight: bold;
 text-align: left;
 }
 h2 {
 }
 .style3 {
 text-decoration: underline;
 }
 .style4 {

 110

 text-align: left;
 border-style: solid;
 border-width: thin;
 font-family: calibri;
 font-size: medium;
 font-weight: bold;
 }
 #webcam1
 {
 height: 199px;
 width: 305px;
 }
</style>
<meta content="Janela de operações do cliente" name="description" />
</head>

<body>

<form id="form1" runat="server">

 <asp:ScriptManager ID="ScriptManager1" runat="server" >
 <Scripts>
 <asp:ScriptReference Path="opCliente.js" />
 </Scripts>
 <Services>
 <asp:ServiceReference Path="WSAlimentacao.asmx"
InlineScript="false" />
 <asp:ServiceReference Path="Sup.asmx" />
 </Services>
 </asp:ScriptManager>

 <div id="image" style="position: absolute; width: 513px; height:
100px; z-index: 1; left: 0px; top: 69px">
 <img alt="PMRLSA" class="div" height="105"
src="images/CabecalhoPmrLsa.png" width="800" /></div>

 <div id="titulo" style="position: absolute; width: 800px; height:
50px; z-index: 3; left: 0">
 <img alt="titulo" class="div" height="50"
src="images/titulo.png" width="800" /></div>

 <div id="layer1" style="position: absolute; width: 822px; height:
68px; z-index: 4; left: 0; top: 172px">
 <img alt="tit_cliente" height="68"
src="images/tit_cliente.png" width="822" /></div>

 <div id="solicitacao" class="centro_img"
 style="position: absolute; width: 317px; height: 300px;
z-index: 5; left: 0px; top: 245px">
 Solicitação de Pedido

 <div id="disponibilidade0" class="style4"
 style="position: absolute; width: 308px; height:
53px; z-index: 1; left: 4px; top: 34px">
 <span
class="style3">Cliente<br class="style3" />
 Código
cliente:

 111

 <input name="txtCodCliente" style="width:
46px" type="text"
 id="txtCodCliente" />

 </div>
 <div id="disponibilidade" class="style4"
 style="position: absolute; width: 311px; height:
67px; z-index: 1; left: 2px; top: 108px">
 <span
class="style3">Disponibilidade

 <input name="txtDisp" style="width: 102px"
type="text"
 id="txtDisp"
/> &n
bsp;

 <input class="botao" name="btnDisp"
type="button" value="Verificar"
 id="btnDisp" onclick="return
disponibilidade()"/>
 &nbs
p;
 </div>
 <div id="layer2" class="style4"

 style="position: absolute; width: 308px; height:
107px; z-index: 2; left: 3px; top: 189px">
 Pedido

 Total de peças:

 <input name="txtTotalPecas" style="width:
46px" type="text"
 id="txtTotalPecas"
/> &n
bsp;
 &nbs
p; &n
bsp;

 <input class="botao" name="btnSolic"
type="button" value="Solicitar"
 id="btnSolic" onclick="return
solicitar()"/>

 Cód. do pedido: <input
name="txtCodPedido" style="width: 46px" type="text"
 id="txtCodPedido" />
 </div>
 </div>
 <div id="layer3" class="centro_img" style="position: absolute;
width: 450px; height: 300px; z-index: 6; left: 350px; top: 245px">
 Status do Pedido

 <div id="entregue" class="style4"

 style="position: absolute; width: 418px; height: 254px; z-
index: 1; left: 25px; top: 33px">

 112

 Concluído:<br
class="style3" />
 Peças
entregues:

 <input name="txtPecasEntregues" style="width: 46px"
type="text"
 id="txtPecasEntregues" />

 &nbs
p;
<img src="http://192.168.0.195:8080/loading.jpg" class="webcam"
id="webcam1"
 onmousedown="PTZMouseDown1(event)" alt="Live Stream"
/>
<script type="text/javascript">
<!--
currentCamera1= 1;
errorimg1= 0;
document.images.webcam1.onload = DoIt1;
document.images.webcam1.onerror = ErrorImage1;
function LoadImage1()
{
 uniq1 = Math.random();
 document.images.webcam1.src = "http://192.168.0.195:8080/cam_"
+ currentCamera1 + ".jpg?uniq="+uniq1;
 document.images.webcam1.onload = DoIt1;
}
function PTZMouseDown1(e)
{
 var IE = document.all?true:false;
 var x,y;
 var myx,myy;
 var myifr = document.getElementById("_iframe-ptz");
 tp = getElPos1();
 myx = tp[0];
 myy = tp[1];
 if(IE){
 var scrollX = document.documentElement.scrollLeft ?
document.documentElement.scrollLeft : document.body.scrollLeft;
 var scrollY = document.documentElement.scrollTop ?
document.documentElement.scrollTop : document.body.scrollTop;
 x = event.clientX - myx + scrollX;
 y = event.clientY - myy + scrollY;
 } else {
 x = e.pageX - myx;
 y = e.pageY - myy;
 }
 if ((width_array[currentCamera1] != null) &&
(width_array[currentCamera1] > 0)) x = Math.round((x * 400) /
width_array[currentCamera1]);
 if ((height_array[currentCamera1] != null) &&
(height_array[currentCamera1] > 0)) y = Math.round((y * 300) /
height_array[currentCamera1]);
 if (x > 400) x = 400;
 if (y > 300) y = 300;
 if (myifr != null) myifr.src =
"http://192.168.0.195:8080/ptz?src=" + currentCamera1 + "&moveto_x=" +
x + "&moveto_y=" + y +"";
 return true;
}
function getElPos1()

 113

{
 el = document.images.webcam1;
 x = el.offsetLeft;
 y = el.offsetTop;
 elp = el.offsetParent;
 while(elp!=null)
 { x+=elp.offsetLeft;
 y+=elp.offsetTop;
 elp=elp.offsetParent;
 }
 return new Array(x,y);
}
function ErrorImage1()
{
 errorimg1++;
 if (errorimg1>3){
 document.images.webcam1.onload = "";
 document.images.webcam1.onerror = "";
 document.images.webcam1.src = "offline.jpg";
 }else{
 uniq1 = Math.random();
 document.images.webcam1.src =
"http://192.168.0.195:8080/cam_" + currentCamera1 +
".jpg?uniq="+uniq1;
 }
}
function DoIt1()
{
 errorimg1=0;
 window.setTimeout("LoadImage1();", 40);
}
//-->
</script>

 </div>
 </div>
</form>
</body>

</html>

Código da javascript da página de operações do cliente (opcliente.js)

var disponivel;
var intervalo = window.setInterval(AtualizaPedido, 10000);

window.onload = function() {
 var wsSupervisorio = new Coordenador.Sup();
 var wsa = new Coordenador.WSAlimentacao();
 wsa.RetornaLoginCliente(descobrecodcliente);
 wsSupervisorio.CarregaXml();
 //window.alert("XmlCarregado!");
 wsSupervisorio.ConectaOPC(conecta);
};

function descobrecodcliente(codCliente) {
 document.getElementById("txtCodCliente").value = codCliente;

 114

}

function conecta(ok) {
 if (ok == true) {
 window.alert("OPC conectado");
 }
 if (ok == false) {
 window.alert("OPC não conectado!");
 }
}

function disponibilidade() {
 var wsa = new Coordenador.WSAlimentacao();
 window.alert("Verificando disponibilidade...");
 wsa.DispAlimentacao(Disp);
}

function solicitar() {
 var wsa = new Coordenador.WSAlimentacao();
 var codCliente;
 var npecas;
 if (disponivel == true) {
 codCliente = document.getElementById("txtCodCliente").value;
 npecas = document.getElementById("txtTotalPecas").value;
 window.alert("Solicitando pedido");
 wsa.SolicPedido(codCliente, npecas, SolicitaPedido);
 }
 if (disponivel == false) {
 window.alert("Por favor, aguarde a disponibilidade!
Obrigada!");
 }
}

function Disp(Ok) {
 if (Ok == true) {
 disponivel = Ok;
 document.getElementById("txtDisp").value = "DISPONÍVEL";
 }
 if (Ok == false) {
 disponivel = Ok;
 document.getElementById("txtDisp").value = "INDISPONÍVEL";
 }
}

function SolicitaPedido(codPedido) {
 document.getElementById("txtCodPedido").value = codPedido;
}

function AtualizaPedido() {
 var wsa = new Coordenador.WSAlimentacao();
 var codPedido;
 codPedido = document.getElementById("txtCodPedido").value;
 wsa.ConsultaPedido(codPedido, estadopedido);
}

function estadopedido(nPecasEntregues) {
 var pecastotais;
 pecastotais = document.getElementById("txtTotalPecas");

 115

 document.getElementById("txtPecasEntregues").value =
nPecasEntregues;
 if (pecastotais <= nPecasEntregues) {
 window.alert("Pedido Entregue!");
 document.getElementById("txtPecasEntregues").value = "";
 document.getElementById("txtTotalPecas").value = "";
 document.getElementById("txtDisp").value = "";
 document.getElementById("txtCodPedido").value = "";
 }

}

Código da página de operações do teleoperador (opteleop.aspx)

<%@ Page Language="vb" AutoEventWireup="false"
CodeBehind="opTeleop.aspx.vb" Inherits="Coordenador.opTeleop" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta content="pt-br" http-equiv="Content-Language" />
<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />
<title>Teleoperacao</title>
<style type="text/css">
 .div {
 margin-right: auto;
 margin-left: auto;
 }
 .centro_img {
 text-align: center;
 border-style: solid;
 border-width: thin;
 }
 .centralimg {
 margin-top: 20px;
 }
 .botao {
 font-family: Calibri;
 font-style: normal;
 font-weight: bold;
 top: 20;
 height: 22px;
 margin-bottom: 0px;
 }
 h1 {
 font-family: calibri;
 }
 .h1 {
 font-family: calibri;
 font-size: medium;
 font-weight: bold;
 text-align: center;
 }
 h1 {
 font-family: calibri;
 font-size: medium;
 font-weight: bold;

 116

 text-align: center;
 }
 .style1 {
 text-decoration: underline;
 }
 .style2 {
 font-family: calibri;
 font-size: medium;
 font-weight: bold;
 text-align: center;
 text-decoration: underline;
 }
 .style3 {
 text-align: center;
 border-style: solid;
 border-width: thin;
 font-family: calibri;
 font-size: medium;
 font-weight: bold;
 }
 .style4 {
 text-align: center;
 border-style: solid;
 border-width: thin;
 font-family: calibri;
 font-size: medium;
 font-weight: bold;
 text-decoration: underline;
 }
 .style5 {
 text-align: left;
 border-style: solid;
 border-width: thin;
 font-family: calibri;
 font-size: medium;
 font-weight: bold;
 }
 .style6 {
 text-align: right;
 border-style: solid;
 border-width: thin;
 font-family: calibri;
 font-size: medium;
 font-weight: bold;
 }
 .style7 {
 text-align: right;
 }
 .style8 {
 font-family: Calibri;
 font-style: normal;
 top: 20;
 font-size: small;
 }
 .emerg {
 border-style: solid;
 border-color: #FF0000;
 font-family: calibri;
 }
 .emerg {
 font-family: calibri;

 117

 font-size: large;
 font-weight: bold;
 font-variant: small-caps;
 text-transform: none;
 color: #FF0000;
 border-style: solid;
 border-color: #FF0000;
 text-align: center;
 }
 .style9 {
 text-align: left;
 margin-left: 80px;
 }
 #webcam1
 {
 height: 217px;
 width: 267px;
 }
</style>
<meta content="Operacao de tele-operação." name="description" />
</head>

<body>

<form id="form1" runat="server">

 <asp:ScriptManager ID="ScriptManager1" runat="server" >
 <Scripts>
 <asp:ScriptReference Path="opTeleop.js" />
 </Scripts>
 <Services>
 <asp:ServiceReference Path="Sup.asmx" />
 <asp:ServiceReference Path="WSTeleoperacao.asmx"
InlineScript="false" />
 <asp:ServiceReference Path="WSAlimentacao.asmx" />
 </Services>
 </asp:ScriptManager>

 <div id="image" style="position: absolute; width: 513px; height:
100px; z-index: 1; left: 0px; top: 69px">
 <img alt="PMRLSA" class="div" height="105"
src="images/CabecalhoPmrLsa.png" width="800" /></div>

 <div id="layer1" style="position: absolute; width: 822px; height:
68px; z-index: 4; left: 0px; top: 173px">
 <img alt="tit_teleop" height="68"
src="images/tit_teleop.png" width="822" /></div>

 <div id="titulo" style="position: absolute; width: 800px; height:
50px; z-index: 3; left: 0">
 <img alt="titulo" class="div" height="50"
src="images/titulo.png" width="800" /></div>

 <div id="modo" style="position: absolute; width: 200px; height:
100px; z-index: 5; left: 0px; top: 370px" class="centro_img">
 Modo de Operação

 <select class="botao" id="sel_modo" name="sel_modo" size="1"
style="width: 88px">
 <option value="monit">Monitorar</option>
 <option value="teleop">Teleoperar</option>

 118

 </select>

 <input class="botao" name="btnModo" id="btnModo"
type="button" value="modo" onclick="return modo()" />
 </div>

 <div id="Pedido" class="centro_img" style="position: absolute;
width: 200px; height: 100px; z-index: 6; left: 2px; top: 520px">
 Pedido

 código Pedido:
 <input name="txtCodPedido" style="width: 46px"
type="text"
 id="txtCodPedido" />

 </div>
 <div id="Teleoperador" class="style3" style="position: absolute;
width: 200px; height: 75px; z-index: 7; left: 0px; top: 245px">
 Tele-operador

 Código
 <input class="botao" name="txtCodTeleop"
id="txtCodTeleop" style="width: 72px" type="text" />
 </div>

 <div id="video" class="style4" style="position: absolute; width:
300px; height: 300px; z-index: 8; left: 227px; top: 245px">
 Visualização

 <script type="text/javascript">
 var height_array = new Array();
 var width_array = new Array();
 width_array[1] = 352;
 height_array[1] = 288;
 </script>
 <img
src="http://192.168.0.195:8080/loading.jpg" class="webcam"
id="webcam1"

onmousedown="PTZMouseDown1(event)" alt="Live Stream" />
 <script type="text/javascript">
 <!--
 currentCamera1= 1;
 errorimg1= 0;
 document.images.webcam1.onload = DoIt1;
 document.images.webcam1.onerror = ErrorImage1;
 function LoadImage1()
 {
 uniq1 = Math.random();
 document.images.webcam1.src =
"http://192.168.0.195:8080/cam_" + currentCamera1 +
".jpg?uniq="+uniq1;
 document.images.webcam1.onload =
DoIt1;
 }
 function PTZMouseDown1(e)

 119

 {
 var IE = document.all?true:false;
 var x,y;
 var myx,myy;
 var myifr =
document.getElementById("_iframe-ptz");
 tp = getElPos1();
 myx = tp[0];
 myy = tp[1];
 if(IE){
 var scrollX =
document.documentElement.scrollLeft ?
document.documentElement.scrollLeft : document.body.scrollLeft;
 var scrollY =
document.documentElement.scrollTop ?
document.documentElement.scrollTop : document.body.scrollTop;
 x = event.clientX - myx + scrollX;
 y = event.clientY - myy + scrollY;
 } else {
 x = e.pageX - myx;
 y = e.pageY - myy;
 }
 if ((width_array[currentCamera1] !=
null) && (width_array[currentCamera1] > 0)) x = Math.round((x * 400) /
width_array[currentCamera1]);
 if ((height_array[currentCamera1] !=
null) && (height_array[currentCamera1] > 0)) y = Math.round((y * 300)
/ height_array[currentCamera1]);
 if (x > 400) x = 400;
 if (y > 300) y = 300;
 if (myifr != null) myifr.src =
"http://192.168.0.195:8080/ptz?src=" + currentCamera1 + "&moveto_x=" +
x + "&moveto_y=" + y +"";
 return true;
 }
 function getElPos1()
 {
 el = document.images.webcam1;
 x = el.offsetLeft;
 y = el.offsetTop;
 elp = el.offsetParent;
 while(elp!=null)
 { x+=elp.offsetLeft;
 y+=elp.offsetTop;
 elp=elp.offsetParent;
 }
 return new Array(x,y);
 }
 function ErrorImage1()
 {
 errorimg1++;
 if (errorimg1>3){
 document.images.webcam1.onload =
"";
 document.images.webcam1.onerror
= "";
 document.images.webcam1.src =
"offline.jpg";
 }else{
 uniq1 = Math.random();

 120

 document.images.webcam1.src =
"http://192.168.0.195:8080/cam_" + currentCamera1 +
".jpg?uniq="+uniq1;
 }
 }
 function DoIt1()
 {
 errorimg1=0;
 window.setTimeout("LoadImage1();",
40);
 }
 //-->
 </script>

 </div>

 <div id="atividade" class="style5" style="position: absolute;
width: 300px; height: 70px; z-index: 9; left: 228px; top: 550px">
 Atividade:

 <input class="botao" name="txtAtividade" id="txtAtividade"
style="width: 174px"
 type="text" />

 <input class="botao" name="btnFazer" id="btnFazer"
type="button" value="Fazer" onclick="return fazer()"/>

 <input class="botao" name="btnNaoFazer" id="btnNaoFazer"
type="button" value="Não Fazer" onclick="return nfazer()" />
 </div>
 <div id="estado" class="style6"
 style="position: absolute; width: 245px; height: 218px; z-
index: 10; left: 555px; top: 245px">
 Estado Equipamento<span
class="style8">

 <div id="layer2" class="style7"
style="position: absolute; width: 150px; height: 170px; z-index: 1;
left: 3px; top: 40px">

 Tem peça:

 Cilindro Recuado:

 Cilindro Avançado:

 Braço na alimentação:

 Braço na inspeção:

 Peça presa pela ventosa:

 121

 </div>
 <div id="layer6" class="style7"style="position:
absolute; width: 48px; height: 20px; z-index: 1; left: 159px; top:
92px">
 <asp:Image ID="imgOk_R001" runat="server"
ImageUrl="~/images/ok.png"
 Width="16px" />
 <asp:Image ID="imgNOK_R001" runat="server"
ImageUrl="~/images/nok.png"
 Width="19px" />
 </div>
 <div id="layer5" class="style7" style="position:
absolute; width: 48px; height: 20px; z-index: 1; left: 159px; top:
64px">
 <asp:Image ID="imgOk_R000" runat="server"
ImageUrl="~/images/ok.png"
 Width="16px" />
 <asp:Image ID="imgNOK_R000" runat="server"
ImageUrl="~/images/nok.png"
 Width="19px" />
 </div>
 <div id="layer4" class="style7" style="position:
absolute;width: 48px; height: 20px; z-index: 1; left: 160px; top:
38px">
 <asp:Image ID="imgOk_R006" runat="server"
ImageUrl="~/images/ok.png"
 Width="16px" />
 </div>
 <div id="layer9" class="style7"

 style="position: absolute; width: 48px; height: 20px;
z-index: 1; left: 161px; top: 185px">
 <asp:Image ID="imgOk_R005" runat="server"
ImageUrl="~/images/ok.png"
 Width="16px" />
 <asp:Image ID="imgNOK_R005" runat="server"
ImageUrl="~/images/nok.png"
 Width="19px" />

 &nbs
p;

 &nbs
p;

 &nbs
p;

 122

 &nbs
p;
 </div>
 <div id="layer8" class="style7"

 style="position: absolute; width: 48px; height: 20px;
z-index: 1; left: 161px; top: 153px">
 <asp:Image ID="imgOk_R003" runat="server"
ImageUrl="~/images/ok.png"
 Width="16px" />
 <asp:Image ID="imgNOK_R003" runat="server"
ImageUrl="~/images/nok.png"
 Width="19px" />

 &nbs
p;

 &nbs
p;

 &nbs
p;

 &nbs
p;
 </div>
 <div id="layer7" class="style7"

 style="position: absolute; width: 48px; height: 20px;
z-index: 1; left: 161px; top: 122px">
 <asp:Image ID="imgOk_R002" runat="server"
ImageUrl="~/images/ok.png"
 Width="16px" />
 <asp:Image ID="imgNOK_R002" runat="server"
ImageUrl="~/images/nok.png"
 Width="19px" />

 &nbs
p;

 &nbs
p;

 &nbs
p;

 123

 &nbs
p;
 </div>
 </div>

 <div id="emergencia" style="position: absolute; width: 245px;
height: 140px; z-index: 11; left: 555px; top: 480px">
 <p class="style9">
 <asp:ImageButton ID="btnEmergencia" runat="server"
Height="116px"
 ImageUrl="~/images/emergency.PNG" Width="115px"
OnClientClick="emergencia(); return false;" />
 </p>
 </div>
</form>
</body>

</html>

Código da javascript da página de operações do teleoperador

(opteleop.js)

var codTeleoperador;
var modoop;
var codigoPedido;
var intervalo = window.setInterval(AtualizaSensores, 5000);
var intervalo2 = window.setInterval(acordaSup, 7000);
var intervalo3 = window.setInterval(Telecomando, 10000);
var time = window.setTimeout(inicio, 1000);

window.onload = function() {
//inicializa imagens da tela
 document.getElementById("imgNOK_R000").style.visibility =
"hidden";
 document.getElementById("imgOk_R000").style.visibility = "hidden";
 document.getElementById("imgNOK_R001").style.visibility =
"hidden";
 document.getElementById("imgOk_R001").style.visibility = "hidden";
 document.getElementById("imgNOK_R002").style.visibility =
"hidden";
 document.getElementById("imgOk_R002").style.visibility = "hidden";
 document.getElementById("imgNOK_R003").style.visibility =
"hidden";
 document.getElementById("imgOk_R003").style.visibility = "hidden";
 document.getElementById("imgNOK_R005").style.visibility =
"hidden";

 124

 document.getElementById("imgOk_R005").style.visibility = "hidden";
 document.getElementById("imgNOK_R006").style.visibility =
"hidden";
 document.getElementById("imgOk_R006").style.visibility = "hidden";
 //conecta opc e loga tele-operador
};

function inicio() {
 var wsSup = new Coordenador.Sup();
 var wsa = new Coordenador.WSTeleoperacao();
 //window.alert("abriu o load");
 wsa.RetornaLoginTeleop(desccod);
 wsSup.CarregaXml();
 //window.alert("XmlCarregado!");
 wsSup.ConectaOPC(conecta);
}

function desccod(codTeleop) {
 // window.alert(codTeleop);
 document.getElementById("txtCodTeleop").value = codTeleop;
 codTeleoperador = codTeleop;
}

function conecta(ok) {
 if (ok == true) {
 window.alert("OPC conectado");
 }
 if (ok == false) {
 window.alert("OPC não conectado!");
 }
}

function modo() {
 var wsa = new Coordenador.WSTeleoperacao();
 modoop = document.getElementById("sel_modo").value;
 wsa.ModoOperacao(codTeleoperador, modoop, alteramodo);
}

function emergencia() {
 var wsSup = new Coordenador.Sup();
 wsSup.ParadaEmergencia();
}

function alteramodo(ok) {
 if (ok == true) {
 if (modoop == "monit") {
 window.alert("Modo de Monitoração");
 document.getElementById("btnFazer").disabled=true;
 document.getElementById("btnNaoFazer").disabled=true;
 }
 if (modoop == "teleop") {
 window.alert("Modo de Tele-operação. Observe as atividades
pendentes!");
 document.getElementById("btnFazer").disabled = false;
 document.getElementById("btnNaoFazer").disabled = false;
 }
 }
 if (ok == false) {
 window.alert("Por favor, selecione o modo novamente.
Obrigada");
 }

 125

}

function AtualizaSensores() {
 var wsSup = new Coordenador.Sup();
 //wsSup.Acorda();
 wsSup.lerPorta("R000", atualizaEstado_R000);
 wsSup.lerPorta("R001", atualizaEstado_R001);
 wsSup.lerPorta("R002", atualizaEstado_R002);
 wsSup.lerPorta("R003", atualizaEstado_R003);
 wsSup.lerPorta("R005", atualizaEstado_R005);
 wsSup.lerPorta("R006", atualizaEstado_R006);
}

function atualizaEstado_R000(estado_port) {
 if (estado_port == "0") {
 document.getElementById("imgNOK_R000").style.visibility =
"visible";
 document.getElementById("imgOk_R000").style.visibility =
"hidden";
 }
 if (estado_port == "-1") {
 document.getElementById("imgNOK_R000").style.visibility =
"hidden";
 document.getElementById("imgOk_R000").style.visibility =
"visible";
 }
}

function atualizaEstado_R001(estado_port) {
 if (estado_port == "0") {
 document.getElementById("imgNOK_R001").style.visibility =
"visible";
 document.getElementById("imgOk_R001").style.visibility =
"hidden";
 }
 if (estado_port == "-1") {
 document.getElementById("imgNOK_R001").style.visibility =
"hidden";
 document.getElementById("imgOk_R001").style.visibility =
"visible";
 }
}

function atualizaEstado_R002(estado_port) {
 if (estado_port == "0") {
 document.getElementById("imgNOK_R002").style.visibility =
"visible";
 document.getElementById("imgOk_R002").style.visibility =
"hidden";
 }
 if (estado_port == "-1") {
 document.getElementById("imgNOK_R002").style.visibility =
"hidden";
 document.getElementById("imgOk_R002").style.visibility =
"visible";
 }
}

function atualizaEstado_R003(estado_port) {
 if (estado_port == "0") {

 126

 document.getElementById("imgNOK_R003").style.visibility =
"visible";
 document.getElementById("imgOk_R003").style.visibility =
"hidden";
 }
 if (estado_port == "-1") {
 document.getElementById("imgNOK_R003").style.visibility =
"hidden";
 document.getElementById("imgOk_R003").style.visibility =
"visible";
 }
}
function atualizaEstado_R005(estado_port) {
 if (estado_port == "0") {
 document.getElementById("imgNOK_R005").style.visibility =
"visible";
 document.getElementById("imgOk_R005").style.visibility =
"hidden";
 }
 if (estado_port == "-1") {
 document.getElementById("imgNOK_R005").style.visibility =
"hidden";
 document.getElementById("imgOk_R005").style.visibility =
"visible";
 }
}
function atualizaEstado_R006(estado_port) {
 if (estado_port == "0") {
 document.getElementById("imgNOK_R006").style.visibility =
"visible";
 document.getElementById("imgOk_R006").style.visibility =
"hidden";
 }
 if (estado_port == "-1") {
 document.getElementById("imgNOK_R006").style.visibility =
"hidden";
 document.getElementById("imgOk_R006").style.visibility =
"visible";
 }
}
// *************************************

function acordaSup(){
 var wsSup = new Coordenador.Sup();
 wsSup.Acorda();
}

function Telecomando(){
 var wsTele = new Coordenador.WSTeleoperacao();
 var wsa = new Coordenador.WSAlimentacao();
 var codTeleop;
 var ModoOperacao;
 codigoPedido = 0;
 ModoOperacao = document.getElementById("sel_modo").value;
 codTeleop = document.getElementById("txtCodTeleop").value;
 // window.alert(codTeleop);
 wsa.RetornaCodPedidoTeleop(codTeleop, descobrecodpedido);
}

function descobrecodpedido(codPedido) {
 var wsTele = new Coordenador.WSTeleoperacao();

 127

 codigoPedido = codPedido;
 // window.alert(codigoPedido);
 document.getElementById("txtCodPedido").value = codigoPedido;
 if (codigoPedido == 0) {

 }
 else {
 if (modoop == "teleop") {
 wsTele.InfEstTelecomando(codTeleoperador, codPedido,
atualizaatividade);
 }
 }

}

function atualizaatividade(atividade) {
 // window.alert(atividade);
 document.getElementById("txtAtividade").value = atividade;
}

function fazer() {
 var wsTele = new Coordenador.WSTeleoperacao();
 var wsa = new Coordenador.WSAlimentacao();
 var codPedido = 0;
 var codTeleop;
 codTeleop = document.getElementById("txtCodTeleop").value;
 codPedido = document.getElementById("txtCodPedido").value;
 wsTele.AtualizaEstTelecomando(codPedido, codTeleop, fazerok);
}

function fazerok(Ok) {
 if (Ok == false) {
 window.alert("Por favor, decida novamente sobre esta
operação");
 }
 if (Ok == true) {
 window.alert("Operação em processo!");
 }
}

function nfazer() {
 window.alert("Ok. Aguardando autorização para executar esse
passo");
}

